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Summary

Currently, in the digital age, collaborative manufacturing and management
is fundamental to permit and promote a sustainable development of
companies, either traditional or extended and networked organizations,
including cyber physical systems.

This book aims at putting forward higher-quality technical-scientific
content about fundamental methodologies, models, methods, tools, and
platforms about collaborative engineering, to support manufacturing and
management processes and practices, aligned with the current requirements
underlying Industry 4.0, and Society 5.0 principles and aims. To this end,
this book’s focus is on the exploration and application of collaborative
management paradigms about dynamic, distributed, integrated, intelligent,
predictive, parallel, and real-time based approaches and tools to enable
collaborating entities, including suppliers, business partners and other
stakeholders, to develop projects and solve problems that are becoming
increasingly more complex and challenging currently. Such collaborative
processes and practices require companies and underlying stakeholders to
be connected, and to further communicate, and share data, problems, and
expertise, and other kind of resources, along with concerns, difficulties, and
challenges, requiring co-learning, and the co-creation of knowledge,
processes, methods, and systems to interactively support projects and
problems solving.

In this book advanced ideas and works compendium, supported by case
studies will be provided, to assist scientists, practitioners, and students in
high standard manufacturing management processes and practices, to
properly handle their daily base problems and challenges, with a special
focus on the use of recent paradigms and tools to support manufacturing

management decision making, through innovative methodologies and



approaches for permitting researchers to learn, develop further work, and
become advanced practitioners and promoters of collaborative

management.



Preface

Collaboration between and within companies, along with suppliers,
customers, and stakeholders is crucial in the current digital era to enable a
global sustainable development of organizations, varying from more
traditional to extended and virtual ones. Recent developments underlying
the Industry 4.0 concept, in Europe and further the Society 5.0 one, in
Japan, enable and promote Collaboration, by putting forward technology
that permits connection, communication, sharing, co-learning, and co-
creation of knowledge, methods, and tools between those entities.
Collaborative Manufacturing and Management processes and practices, is
thus currently possible and easier to be accomplished through the use of
advanced technology that permits putting into use a set of fundamental
underlying paradigms, about dynamic, distributed, integrated, intelligent,
predictive, parallel, and real-time based approaches, systems, and platforms,
which are of prime relevance currently for managing either more traditional

or more advanced, smart and cyber physical production systems.

Scope

With this book, the editors aim at compiling a higher-quality content about
fundamental methodologies, methods, models, tools, and platforms that
enable putting into practice collaborative engineering principles, which is of
prime importance currently for worldwide researchers, managers and
stakeholders, to provide a further understanding about the current need for
using such collaborative engineering principles, namely in the scope of
manufacturing management. It is thus expected that the set of advanced
ideas and works compendium, supported by case studies, will assist
scientists and practitioners in high standard manufacturing management

processes and practices, to properly handle their problems and challenges



on a daily basis, with a special focus in the new areas of manufacturing
management paradigms, and to create a basic knowledge resource for
young researchers through which they can learn and develop further
towards becoming advanced practitioners and promoters of the mentioned

subject.

Target Audience

The current perspectives of Collaborative manufacturing management
paradigms, approaches, and systems hold important implications for current
practices and understanding these concepts and processes for further
implications consists of an emergent need. Moreover, considering
environmental and/or social performance, and economic performance
integrated with manufacturing system performances need to be further
understood. This book aims at integrating significant knowledge in the
focused domain, and to become very helpful for Graduate, and Postgraduate
students as well, along with advanced managers, decision- makers,

practitioners, and researchers by elucidating about its practical implications.
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Part 1
Fundamentals of Collaboration and
Collaborative Manufacturing
Management



1
Main Collaboration and Collaborative
Engineering Concepts

Collaboration and Collaborative engineering are not new topics but have
taken on new importance today, in the context of Industry 4.0 or 14.0 for
short. There are other concepts, which, although well known, are different
but often mismatched with collaboration. Therefore, the main objective of
this chapter is to present a concept of collaborative engineering, together
with the underlying sub-concepts, supported by an extensive systematic
literature review carried out. A critical analysis and discussion is also
presented, based on the main insights brought through the literature review.
The fundamental importance of collaborative learning, along with the
human role, in the current 14.0 is also discussed in this chapter, based on a

proposed collaboration framework.

Introduction
The term collaboration is frequently used for expressing some kind of joint
process or practice to be carried out, for instance, in manufacturing
management context (Mowery, 1989; McClellan, 2002; Huang, 2002;
Sluga, Bilbao et al., 2004; Sluga et al., 2005; Nof, 2006; Chituc et al.,
2007; Lin et al., 2008; Wang, 2008a,b; Zaletelj et al., 2008; Camarinha-
Matos et al., 2009a,b; Cherubini et al., 2016; Arrais-Castro et al., 2018;
Feng and Huang, 2018; Yang et al., 2017), or in some other engineering or
manufacturing decision-making processes (Alavi et al., 1995; Barnes et al.,
2006; Raike et al., 2013; Karp and Pardo, 2017; Blackburn et al., 2020;
Moreno-Guerrero, et al., 2020; Sousa et al., 2021).



One of such frequent uses of the collaboration occurs, in fact, in the
Engineering field, and it is referred to as collaborative engineering (CollE)
(Putnik et al., 2021a,b), which is often confused with the concurrent
engineering (CE) concept (Putnik et al., 2021a,b), whereby assuming that a
main common goal does exist, but which in fact does not need to be the
case, either in a more tangible or manufacturing practices scenario (Jiang
and Zhang, 2002; Shyamsundar and Gadh, 2002; Simatupang and
Sridharan, 2002; Deek et al., 2003; Colombo et al., 2004, 2005; Leitao et
al., 2005; Nof, 2006; Li et al., 2007; Zaletelj et al., 2008; Ma et al., 2008;
Camarinha-Matos et al., 2009; Belkadi et al., 2020) or in a more intangible
or management context, namely, regarding some collaborative information
or knowledge processing or some other kind of decision-making process
(Mitchell & Singh, 1996; Frohlich et al., 1997; Svendsen, 1998; Majchrzak
et al., 2000; Aviv, 2001; Bititci, et al., 2003; Ulaga, 2003; Ming et al., 2005;
Heckscher and Heckscher, 2007; Ramstad, 2008; Brown et al., 2016;
ArraisCastro et al., 2015, 2018; Sousa et al., 2021).

The main difference between the two concepts (CollE and CE), as
referred in (Putnik et al., 2021a,b), is that in CollE there may or may not
exist a common goal, but, instead, it implies the existence of a common
understanding, learning or co-learning (van Eijnatten et al., 2004; Putnik et
al., 2021a,b).

Moreover, the existence of a common understanding as a necessary
condition for collaboration within a manufacturing environment pre-
assumes the existence of a common communication standard, a common
language between the elements of the community. Such communication
standards are the real necessary condition for the very emergence of
collaborative networks, for instance, [IoT communication protocols (Lin et
al., 2015; Liet al., 2017).



Besides, regarding more practical application scenarios occurring, for
instance, in a manufacturing environment, it frequently implies sharing
some kind of material or manufacturing resource, such as a production tool
or machine (Ferreira et al., 2022). It may also just imply sharing some piece
of information, knowledge, or experience (Ferreira et al., 2022).

In any case, according to this perspective, in a collaborative procedure or
practice, to be called as such, some kind of mutual or joint learning process
has to occur (Putnik et al., 2021a,b). In this regard, and depending on the
type of collaboration inherent to a specific application scenario, different
kinds of approaches, means and tools, or systems can be explored for
establishing diverse types of collaboration processes or practices, which
include Human-Human, Human-Machine, and Machine-Machine types of
collaboration (Ferreira et al., 2022).

In this chapter, the collaboration concept will be analysed through the
lenses of existing literature, in order to properly support the main ideas
underlying a proposed collaboration concept.

Collaboration is a word that comes from the word ‘colaborare’, and from
its origin, it means to express the action of working or operating with some
other entity (e.g., someone) or anything, to produce or create something
(https://en.wikipedia.org/wiki/Collaboration).

In the literature can be identified two distinct philosophical currents
about the term collaboration, starting from the goal issue. One that defends
the existence of a common goal or objective, and another one for which this
does not have to be verified.

Collaboration is defined as: “social skills, relationships, practices, and
technology services that improve how people work jointly and substantially
together (sharing responsibility and risk), to communicate needs, coordinate

activities, share information, exchange know-how, build community or
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achieve a common (team) objective (typically related to a process or
project) within or across organi sational boundaries’
(http://mikeg.typepad.com/perceptions/2004/05/defining collab.html)

In Camarinha-Matos and Afsarmanesh (2006) and Abreu and
Camarinha-Matos (2008), the authors further state that collaboration is, in
fact, not just related to sharing or distributing data, and information, but
also with sharing knowledge, benefit, profit, skills, competences, along with
costs, dependencies, difficulties, and even risks, between two or more
entities.

In Lai (2011), collaboration is defined as being a “mutual engagement of
participants in a coordinated effort to solve a problem together”. Moreover,
the authors refer that “collaborative interactions are characteris ed by shared
goals, symmetry of structure, and a high degree of negotiation, interactivity,
and interdependence...”.

These considerations are, in fact, subjacent to the very closely related
concept of concurrent engineering (CE) which i1s already very well
established in the literature (Putnik and Putnik, 2019).

Summarising, the origin of the collaboration concept enables us to
highlight that:

e Collaboration is a word that originates from the word ‘colaborare’ and
since its origin it aims to express the “action of working or operating
with some other entity...” (for example, one person with another, to
produce or create something together (Schrage, 1990) in Shared
Minds.

e Collaboration is also defined as: “social skills, relationships,
practices, and technological services that improve the way people
work together, to communicate needs, coordinate activities, share

information, exchange know-how, build a community, or achieve a
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common goal” (of a team, typically related to a process or project)
within a given organis ation or between organis ations (Gotta, 2008).

e In the literature, two main philosophical currents are identified
about the term collaboration, one regarding the existence of a
common goal (Camarinha-Matos and Afsarmanesh, 2004, 2006, 2007,
Gotta, 2008), and another one about the existence of a common
understanding (Putnik et al., 2021a,b; Varela et al., 2022; Varela et
al., 2022,a,b,c).

e Abreu, and Camarinha-Matos, in 2008 emphasis ed that
“collaboration is not only related to the sharing of data and
information, but also to the sharing of knowledge, benefits, profits,
capabilities, skills, and also with the sharing of costs, dependencies,
difficulties, and even risks between two or more entities, ...”.

e Lai (2011) defined collaboration as a “mutual engagement of
participants in a coordinated effort to solve a problem together,
with collaborative interactions characteris ed by shared goals and a
high degree of negotiation, interactivity, and interdependence ...”.

e Putnik and Putnik (2019) mentioned some differences between more
or less closely related engineering strategies, namely, referring to
the typical existence of conflicts in concurrent engineering,
requiring negotiation processes, while highlighting the importance

of the dialogue in collaboration.

In order to properly define collaboration, a systematic literature review
(SLR) was performed, with an additional objective to identify main
collaboration sub-concepts, and types of collaboration, further correlating
them, and extracting information about main clusters of terms being used,

regarding the Collaboration paradigm, including main methodologies,



approaches or methods, and key terms, that are going to be summaris ed in

this chapter.

Proposed Collaboration Concept

In this section, a CollEng-M&M conceptual model, along with its main
underlying components or sub-concepts will be put forward, based on the
authors’ own knowledge and experience, underlying main research activity,
about core findings related to collaboration, along with some main findings
from the literature, that were further deeply analysed, through the results of
the SLR conducted, to properly support the proposed conceptual model, and
by briefly describing the main outcomes reached (Varela et al., 2022).

The proposed CollEng-M&M conceptual model consists of six main
pillars that address some considered main conditions, structured as shown

in Figure 1.



Application

Co-creation

Co-Learning

Sharing

Communication

Figure 1 Collaborative engineering and management conceptual model (adapted from:
Varela et al., 2022). <&

Proposed Collaboration Conceptual Model

This conceptual model includes two main areas of sub-concepts:

A lower level of collaboration—with the inclusion of connection,
communication, and sharing of information, know-how, technology,
means, approaches, tools or platforms, therefore tangible and/or
intangible assets, namely, through some kind of coordination or
cooperation mechanism, but without effective (co)learning, therefore,
just satisfying a basic level or form of collaboration, that is characterised as
a partial collaboration.



A higher level of collaboration—with the inclusion of (co)learning
through appropriate technology, means, approaches, tools, or platforms
that allow, and envision some type of co-creation, centred or not on human
intervention, namely, in manufacturing and/or management processes and

practices.

Collaboration Sub-concepts

Connection consists of some kind of physical or logical link between two
or more things or entities. In case of more than two entities being
connected, it 1is also wusually referred as an ‘Interconnection’
(https://en.wikipedia.org/ wiki/Connection).

Main connection/connectivity types

e Networked supply chains

Connected companies

Connected machines

Connected products

Connected workers

Connected services

Communication is the imparting or exchanging or transmission of
information. Thus, the concept or state of exchanging data or information
between entities.

For instance, a message is an example of data or information transferred
in  an act of communication  (https://en.wikipedia.org/wiki/
Communication).

Thus, communication is an instance of information transfer, and a

required element for enabling a conversation or discourse.
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Another example from the educational context can be referred to as being
the professors’ communications of lively discussion or via email. So a
communication is carried out through a passageway or opening between
two or more locations, the connections.

Connection and communication together enable to establish networks
and underlying interactions, usually called network communications,
through which information transmission or sharing occurs.

Network communications based on wireless and internet technologies
(Internet of Things, 10T), along with the use of a widened set of
communication technology, tools, devices, and means, e.g., sensors,
actuators, Radio Frequency Identification (RFID), along with smart objects,
among other technology, serves to link machines, work products, systems
and people, within a manufacturing plant, intra company or inter
companies, through a more or less extended network of stakeholders, which
may include, e.g., suppliers, distributors, business partners, and customers
communicating worldwide.

Schrage (1990) mentions that it is noticeable that a lack of structures
allow people to express their competences creatively. Moreover, he says
that merely teamwork does not mean authentic collaborative work, and that
“shared spaces” like blackboards or brainstorming sessions enable it to pass
from mere communication to true collaboration.

Main communication types

Communication networks (through the cloud, ...)
Several technologies (IoT, RFID, ...)

Smart objects (devices, etc.)



Sharing is the joint use of a resource or space. It is also the process of
dividing and distributing. In its narrow sense, it refers to joint or alternating
use of inherently finite goods, ‘sharing’ can actually mean giving something
as an outright gift: for example, to ‘share’ one’s food really means to give
some of it as a gift. Sharing is a basic component of human interaction, and
is responsible for strengthening social ties and ensuring a person’s well-
being (https://en.wikipedia.org/wiki/Sharing).

In general, sharing consists on partaking or contributing with some kind

of tangible or intangible asset, for instance:

e Sharing files, links, videos, data, and its processing, analysis and
exploitation, either immediately on the factory floor, or in a broader
sense, through the web or cloud.

e Sharing knowledge, competences, expertise, and skills.

e Sharing different kinds of resources, e.g., manufacturing resources,
processors, machines, tools, etc.

e Sharing tasks, problems, costs, challenges, dependencies, risks,
concerns, or difficulties.

e Sharing technology, techniques, software, benefits, innovations, time,
and thinking.

e Sharing suppliers, business partners, products, materials, production
systems, warehouses, transportation means and logistic systems,

companies, and customers.
Main sharing types

e Data, information, knowledge
e Resources, machines

e Processes, tasks, warehouses, transportation means,


https://en.wikipedia.org/wiki/Sharing

Learning consists of the acquisition of knowledge or skills through
study, experience, or being taught (https://en.wikipedia.org/wiki/Learning),
and an important requisite for this knowledge or skills acquisition is the
existence of feedback among entities.

Eijnatten and Putnik (2004) distinguish between different kinds of
learning sub-concepts, further based on other existing sources, as follows
(Eijnatten and Putnik, 2004):

Collective co-learning: “The ability of the collective to learn from
experiences drawn by individuals while working. It is one single
phenomenon that consists of four abilities: relationics, correlation, internal
model, and praxis (Backstrom, 2004).”

Collaborative learning or co-learning: “Learning that occurs as a result
of interaction between peers in the completion of a common task (Noble,
2004).”

In (https://en.wikipedia.org/wiki/Learning), it is also described the
“Organis ational learning” concept, as follows:

Organis ational learning (OL): “is defined as the way people jointly
construct maps (Argyris and Schon, 1997) or exercise competence and
enact qualifications in a network of interacting people (Jensen &
Rasmussen, 2004). OL 1s about the learning process, and more specifically
about the co-operative learning process (McHugh et al., 1998) in a specific
sociocultural context (Cullen, 1999). Moreover, OL introduces hierarchical
levels of learning, i.e., single loop (correction of errors by using feedback),
double loop (changing underlying norms and mechanisms), and triple loop
(questioning essential principles, learning about learning), and also includes
organisational processes. In a critical review, Tsang (1997) states that in
OL, change cognition is a necessary condition (Tsang, 1997): “The

cognitive aspect is generally concerned with knowledge, understanding, and
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insights.” But according to Eijnatten and Putnik (2004), there is a split
among definitions on whether a change in actual or potential behaviour is
required, and by potential behavioural change, these authors assume that the
lessons learnt by an organisation would have an impact upon its future
behaviour.” Eijnatten and Putnik (2004) further explored the concept of
Learning Organisation as follows:

Learning Organi sation (LO): “An organisation, structure, process, or
network ‘“where people continually expand their capacity to create the
results they truly desire, where new and expansive patterns of thinking are
nurtured, where collective aspirations are set free, and where people are
continually learning to see the whole together” (Senge, 1990). The five
required disciplines or “component technologies™ are: (1) Team learning,
(2) Building shared vision, (3) Mental models, (4) Personal mastery, and (5)
Systems thinking (Senge, 1990).”

Additionally, the LO concept is also seen or defined in Eijnatten and
Putnik (2004) as: ““An organisation, structure, process, or network ‘which is
capable of thriving in a world of interdependency and change’ (Kofman and
Senge, 1993).”

Further described in Eijnatten and Putnik (2004) as being: “A social
system whose members have learned conscious communal processes for
continually generating, retaining and leveraging individual and collective
learning to improve performance of the organisational system in ways
important to all stakeholders; and monitoring and improving performance
(Drew and Smith, 1995).”

Besides in Eijnatten and Putnik (2004), the LO is also described as a:
“Sum total of accumulated individual and collective learning (Hyland and
Matlay, 1997).”



Moreover, Eijnatten and Putnik (2004) also mentioned the LO as: “An
organis ation, structure, process, or network ‘exhibiting directed changes at
the macro level’ (Jensen and Rasmussen, 2004).”

Further, in Eijnatten and Putnik (2004) is also mentioned that “according
to Huysman (2000), an LO is ‘a form of organisation that enables the
learning of its members in such a way, that it creates positively valued
outcomes, such as innovation, efficiency, better alignment with the
environment and competitive advantage’.” Also that: “According to
Huysman (2000), an LO is an organisation capable of adapting, changing,
developing, and transforming itself in response to needs, wishes, and
aspirations of people both inside and out.” And that: “Both structural and
cultural organis ation learning mechanisms are important to create and
maintain a LO (Pedler et al., 1991)”.

Besides Eijnatten and Putnik (2004), Sun & Scott also state that:
“Learning must transfer from individual(s) to collective(s) to organisational
to inter-organis ational, and vice-versa, and ‘must’ result in changes in
behaviour (Sun and Scott, 2003)”.

Further, as a concluding remark about the learning process in Eijnatten &
Putnik (2004) it is stated that:

“In the most general sense, learning may be described as an iterative
process of activities, whereby new knowledge is produced through
transformation of experience. Whenever knowledge is created as a result of
individual experiences, i.e., walking through the cycle of planning,
decision-making (DM), action, experience, and reflection, we speak of
“individual learning” (IL) (Kolb, 1984). When it results from interaction
between peers, we speak of ““collective learning” (CL) (Backstrom, 2004)
or ‘“collaborative learning” (Noble, 2004). The outcomes of IL and CL may



be used for either personal or communal purposes, such as the further
development of their own company.”
Based on these main ideas and definitions, it is possible to draw a set of

learning means and outcomes as follows:

e Learning through shared experiences, and goals, regarding individual
and collective learning approaches and practices;

e Learning manufacturing processes, and operations, in the context of H-
H, H-M, and M-M collaboration;

e Learning M&M, and underlying DM processes, methods, and tools;

e Learning improved ways of interactions with worldwide companies’
stakeholders, e.g., suppliers, business partners, and clients;

e Learning innovations and education methodologies, etc.;

e Learning everything needed or wanted by interacting with someone
and/or through something (organisation, social network, etc.).

e Summarising, the previously expressed main ideas inherent to the
learning concept, and summarising, as stated in (Eijnatten and Putnik,
2004): “learning may be described as an iterative process of activities,
whereby new knowledge is produced ...”. Moreover, as a “... LO is “a
form of organisation” that enables the learning of its members in such
a way, that it creates positively valued outcomes, ...”, and this leads to
a kind of ‘natural linkage’ of the learning concept to the next one
defined in the proposed CollEng-M&M conceptual model, the co-

creation.

Main co-learning types

Co-learning between humans
Co-learning between machines
Co-learning between humans and machines

Co-learning between organisations



Co-learning tasks execution (by humans or machines, ...)
Co-learning different subjects (in smaller or bigger communities, e.g., in extended or (Run on)

networked environments)

Co-creation is a general concept that can be used to define a widened set
of ‘things’ that can be created, which may be intangible, such as more or
less simple thoughts, or an idea or some more complex piece of information
or knowledge, by a set of two or more members or entities interacting
through some means and kind of learning process. On the other hand, in the
tangible case, co-creation can further arise through diverse kinds or
interactions, based on the underlying learning process, depending on the
concrete type of means and materials used among the two or more
interacting entities.

In the Wikipedia, in the context of a business, it refers to “a product or
service design process in which input from consumers plays a central role
from beginning to end”. Less specifically, the term is also used for “any
way in which a business allows consumers to submit ideas, designs, or
content”. This way, a firm will not run out of ideas regarding the design to
be created and at the same time, it will further strengthen the business
relationship between the firm and its customers. Another meaning is “the
creation of value by ordinary people, whether for a company or not’
(https://en.wikipedia.org/wiki/Co-creation).

Co-creation was defined by Jansen and Pieters, in 2017, as ““a transparent
process of value creation in ongoing, productive collaboration with, and
supported by all relevant parties, with end-users playing a central role”.

The co-creation term is already a concept relatively in regular use,
especially in marketing and some design practices (e.g., open design), and
in these disciplines it refers to a joint design of a product by designer and

customer and further extensible to a more or less enlarged set of
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participating product development members, working together as a
collaborative team.

This frequently mentioned co-creation concept is thus relatively close to
the ‘traditional’ Concurrent Engineering (CE) concept that also requires
some close relation and practices between a set of members in a team,
working to usually reach some common or concurrent goal or objective,
and which typically implies some kind of negotiation process (Putnik and
Putnik, 2019).

However, the semantics is quite different from theory to theory, from
author to author, from ‘“user”-group to “user’-group, from community to
community, and frequently CE and CollEng are mixed up or
undistinguished, being thus frequently used as similar concepts (Putnik and
Putnik, 2019; Putnik et al., 2021b, 2021c).

Therefore, in this paper, the objective is to clarify the CollEng concept, as
being different from the CE one, as in fact we consider that in CollEng
there 1s no need to have a common goal, but, instead, a common learning,
between the collaborating members.

Besides the co-design or open design, it is also possible to consider some
other kind of co-creation, for instance, co-operation through humanrobot
collaboration, and further, based on any other possible co-creation type,
such as: co-learning, co-decision, co-management, co-maintenance, co-
transportation, and co- or open-innovation, among others.

One such specific term arising from the general co-creation one, which is
frequently used 1s co-work or co-working, mentioned in (Petrillo et al.,
2018), and considered to be crucial up from the 14.0 and abroad to the next,
the fifth industrial revolution (Industry 5.0 or 15.0, for short) (Nahavandi,
2019).



Another closely related term to co-working is cooperating or cooperation.
As stated in (Bechtold and Lauenstein, 2014), Japan begins to talk about
this fifth industrial revolution, which will be marked by the cooperation
between man and machine.

The authors in (Petrillo et al., 2018) claim about this importance of co-
working in the context of an expected significant increase in the complexity
of production environments, and corresponding problems to be solved,
leading to a growing need for further interactions, for instance between
humans and machines, which is the so-called H-M collaboration (Varela et
al., 2022; Manupati et al., 2022).

Finally, in the Engineering field, the application or practical
implementation of the ‘co-creation’ in some specific domain is also of
utmost importance.

Main co-creation types:

Co or open design or project

Co-processing (data, information, knowledge, ...)
Co-analysis (data, information, knowledge, ...)
Co-decision

Co-working

Co-transportation

Co-maintaining
Application is defined in (https://en.wiktionary.org/wiki/application) as
being the act of applying as a means; the employment of means to
accomplish an end; a specific use. Also, the act of directing or referring
something to a particular case, e.g., the application of a theory to a set of
data, etc.
The application level is thus considered a key issue in the proposed
CollE-M&M concept, as in the engineering context it is naturally assumed

and required to exist as some kind of application or implementation.


https://en.wiktionary.org/wiki/application

According to the kind of co-creation underlying the earlier stage or level
in our proposed CollE model, the application can thus vary in a
corresponding widened range of alternative scenarios, deriving from the
underlying specific co-creation type.

For example:

Through co-learning or co-innovation, some new co-created concept of
knowledge can be synthesised or formalis ed and further applied in some
specific application domain.

In the case of some kind of co-working, such as in a team of two or more
people working together in some shared document, e.g., by using google
docs, a final document will be jointly produced.

Also, in the co-design or open design application scenario, as a result or
application will derive some new product design, through a so-called H-H
and/or H-M collaboration.

In a similar way, through co-management or co-decision, some important
conclusion or decision can be taken to be implemented.

Also through co-maintenance or co-transportation, some kind of task can
be carried out by a group of collaborating people and/or jointly through
some kind of means, tools, machines, or transportation device.

Further, in the case of some kind of co operation, or, for instance, in some
H-M collaboration scenario, for instance, through human-robot
collaboration, some kind of task will be accomplished jointly by a human
and a robot, and in some context of M-M collaboration, two or more
machines or robots can also cooperate to reach some specific objective or
accomplish some kind of task together. Therefore, cooperation or mere
coordination between two or more entities, namely between two or more

machines, e.g., robots, is in fact just a lower-level of collaboration, as not



implying co-learning and/or true co-creation, which is clearly the case in
the M-M collaboration context, without human intervention.
Main application types

Co-creation of software, documents, ...

Group decision-making in manufacturing management, ... Collaborative robotics, ...

Therefore, we may conclude that collaboration does, in fact, further
imply some kind of application for reaching the proposed full CollEM&M
concept, for instance, through co-design (open design), co-work, co-
operation, co-maintaining, co-monitoring, co-visualizing, co-learning, co-
thinking, co-data handling, co-analysing, co-interpretation, codeciding, co-
sensing, co-reasoning, etc., resulting in some kind of output, which, in the
concrete engineering scope, will be referred as being some kind of
application or implementation, either through a more tangible or intangible
asset.

In accordance with the information previously exposed, it is now possible

to present a collaboration definition.

Collaboration Definition

Collaboration can be defined as an interaction between two or more
entities (e.g., people, machines or both combined) connected and
communicating by using some means and methods, being supported and
enhanced through the use of appropriate technology to enable sharing any
kind of tangible or intangible resource (e.g., information, problem,
means, machines, etc.), and co-learning, based on openness and common
understanding, to permit the emergence of contributions and reaching
consensus, to co-create some tangible or intangible asset (e.g.,
information, knowledge, method, product, tool, or system), aiming at some

application or implementation, being considered essential for reaching



true innovation and to promote a sustainable development of companies
in the current digital age.

Next, the main types of collaboration will be briefly described.

Types of Collaboration and Relation with Collaboration Levels

Collaboration can be applied in different forms for reaching diverse kinds

or types of collaboration:

¢ Human-Human collaboration (H-H): Such as, co-work based on shared
resources, €.g., google drive and docs, etc.

e Human-Machine (H-M) or Human-Resource (H-R) collaboration: For
instance, based on the use of group DM approaches and methods,
among other methodologies and approaches, e.g., based on Al
approaches and methods, along with a varying kind of meta-heuristics,
etc., namely for supporting joint decision- making processes; human-
robot work or cooperation; other kinds of H-M collaboration, for
example, for machine training, e.g., in supervised machine learning
(ML) context, though the use of “the oracle”, or based on other
approaches, such as, based on game theory, among others; or through
some kinds of H-M co-work, e.g., co-design, co-maintain, co-
transportation, etc.

e M-M or R-R collaboration: E.g., through integrated automatic or
autonomous processes (ex: use of multi-agents, blockchain and smart
contracts, big data (BD) processing, namely based on Al approaches
such as machine or deep learning algorithms, among others, for
instance to enable chaos and complexity processing and analysis, or

the application of game theory methods, etc.

Human-Human Collaboration (H-H) examples



e Group learning (Ex: a group of two or more people learning some
subject together)

e Group decision-making (Ex: use of a multi-criteria group
decisionmaking method to obtain a decision by a set of industrial
managers)

e Group work (Ex: two or more people co-editing a document by using a

tool from Google Docs, among others)

Human-Machine (H-M) or Human-Resource (H-R)
Collaboration examples

e Human-robot co-work (Ex: Semi-automatic inspection of the surface
finish quality of a product, e.g., of a mobile phone assembled in a shop
floor through an interaction between a human operator and an
integrated robotic vision system)

e Machine/algorithm training (Ex: Oracle providing positive and
negative examples to a supervised machine learning algorithm)

e Human-Company collaboration, namely, through the figure of a kind
of ‘broker’ in the context of virtual communities or networks of

companies

Machine-Machine (M-M) or Resource-Resource (R-R)
Collaboration examples

e Collaboration between machines/algorithms (Ex: a set of two or more
algorithms processing a distributed algorithm in parallel to reach a
joint final solution for a given problem)

e (Collaboration between robots (Ex: group of two or more robots

cooperating in the execution of some manufacturing operation)



* (Collaboration between two or more companies or organisations, for
instance in the context of producing some product or while providing
some service in the context of a Virtual community, integrating a
network of companies collaboration in the execution of product’s
tasks.

Relation between Collaboration Levels and Types

According to the proposed collaboration, conceptual model put forward,
and previously described, in the Section 3, in this work the main categories
of publications were organised considering a partial or incomplete use of
the collaboration concept (without ‘learning’), e.g., through IoT, cloud
computing or manufacturing, augmented reality, mixed reality or digital
twins (DT) based approaches, purely based on technology, and without
explicit learning (co-learning) practices, even based on some other
collaborative tools, such as, serious games, google docs, etc.). Although, in
this cluster of publications, there is at least subjacent some connection,
communication, resources sharing or common data handling, based on
some kind of Information and Communication Technology (ICT)
infrastructure and/ or cyber-physical system (CPS) (Romero et al., 2016;
Stern and Becker, 2017; Shi et al., 2011; Emmanouilidis et al., 2019; Baheti
and Gill, 2011; Bousdekis et al., 2020; Fantini et al., 2020), for reaching
some kind of cooperation or joint/shared decision-making process, in some
kind of practical application domain, in the industrial (manufacturing and/or
management) context. Thus, it continues to be considered some kind of
collaboration, of H-H, H-M, or M-M type.

In the presence of ‘ learning’, a more significant, higher, full or complete
accomplishment of the proposed collaboration concept (with ‘learning’ or
‘co-learning’) is present, and which may be either “Not human centred” or

“Human centre d”’). In the case of being ‘“Not human centred”, examples



such as pure M-M learning approaches, based on ML or on other kinds of
procedures, for instance, based on Multi-agents’ interactions, through
Multi-Agent Systems (MAS) may occur. In the case of the human presence
being a key factor, this category is considered the most relevant one, in the
scope of the proposed CollE concept, being H-H: B2.1), and H-M: B2.2)
collaboration types considered, and which are marked by some kind of co-
learning practice, and further applied in some kind of industrial (M&M)
context, thus reaching the higher or complete level of collaboration.

Table 1 synthesises the main clusters of publications and underlying
principal characteristics regarding cooperation and collaboration issues, in
order to properly and clearly state the collaboration concept and subjacent
contributions from the literature.

Table 1 Main characteristics of lower and higher levels of
collaboration clusters with and without human intervention

(adapted from Varela et al. (2022)).<

Collaboration Not human- Human-based
Type Level based (M-M) (H-H, H-M)

Main Skills




Collaboration Not human- Human-based Main Skills
Type Level based (M-M) (H-H, H-M)
Hard and Soft
Machine/deep . . | skills: business/
. Learning organis .
learning; . ) organisational
ation; supervised :
advanced machine oriented:
automation; learnine: paradigms,
self-organis semioti f’; models,
ation; self- . methodologies,
o pragmatics;
parametrization, COrEence: methods,
semantic web; inno \%a tionf systems, and
2nd level neural s platforms based
. through co-x (co-
(higher level): networks; desien or open on feedback,
with learning, intelligent de%i 0 e (I)) ) communication,
and, co-creation systems, &, c¢ dialogue, and,
conceptualize, :
patterns co-learn. co- higher level
recognition, decide ,co- approaches,
based on ’ through learning
. evolve, co- .
exponential innovate. co- paradigms,
technology, ’ means, and
; analyse, co-do,
collaborative co-think. co- software, along
robots, Al, construc t,) with other
CPS, ... > technological

support




Collaboration Not human- Human-based

Type Level based (M-M) (H-H, H-M) Main Skills

Mainly hard
T . . ->
Digitali sation; | Recommendation skills oriented
. . models,
integration, models and )
architectures,
1st level (lower | smart systems; systems, DSS,
) ) methods,
level): smart objects, | human-machine :
. o : ) algorithms,
connection, automatis ation, Interactions,

devices, systems,
and platforms
based on data,

communication, | serviti sation, | human-robot, co-
and sharing, | point-to- point, | x: co-work, co-

without co- end-to-end act, co-produce,
) o knowledge,
learning communication, | co-operate, co- :
o mainly
and maintain, co- :
: transactional
processing... transport...
processes,
means, and tools
Main focus cooperation collaboration

Final Discussion

According to the SLR conducted, some additional main ideas arose from
the literature analysis and synthesis performed, and some main issues are
briefly presented next.

In Li and Q1u (2006), the authors refer to research works and commercial
systems that have been put forward to provide solutions for what they
mention to be collaborative and distributed product development processes,
by further referring that these kinds of practical applications are getting
more pervasive and mature. These authors do also say that important
existing work has been focusing on three main types of systems, concerning
visualisation-based systems, co-design systems, and CE-based systems. To
this end, the authors refer to collaboration as being driven by the
development of logical and intelligent co ordination mechanisms to

facilitate human-human and human-computer relationships.



Although, the main ideas expressed through these works also fit the very
well established definition of the CE concept (Putnik and Putnik, 2019),
which it is quite different from the collaboration one (Putnik and Putnik,
2019; Putnik et al., 2021b; Putnik et al., 2021c). In fact, besides the
common importance of communication, alongside with the sharing issues,
interaction, and interdependence or interplay, either in CE and CollE, the
existence of a common goal, along with coordination, consensus, and
negotiation issues are all well-known key aspects underlying CE (Putnik
and Putnik, 2019) but do not have to comply with collaboration. Thus, the
main existing contributions do not fully comply with the proposed CollE
concept, but just with its lower or basic level, which, in fact, correspond
mainly to the basic or lower level issues underlying the proposed CollE
concept, and the CE one.

This is because in collaboration the existence of a common goal is not a
requisite or even important, but instead, the existence of a ‘“common
understanding”, in a broader sense, in order to enable and promote different
points of view, and a constructive dialogue or discussion about some
subject, which is enriched by diverse types of feedback and opinions that
can even be opposite ones, with the main aim of reaching a common
learning or co-learning stage—thus being important the existence of
multidisciplinary interplaying teams, for promoting further discussion and
an enriched or true co-creation and thus, innovation, which is considered a
key issue in collaboration, and in the current digitalization era.

In this regard, an important contribution for the collaboration concept 1s
put forward by Schrage, in 1990 (Schrage, 1990) in his book Shared Minds,
in which he says that collaboration is not about agreement but about joint
creation, and which thus does support the proposed CollE concept.

Although, co-learning being, for us, considered the real key issue in or for



enabling such co-creation, thus reaching a higher or full level of
collaboration.

In (Putnik et al., 2021b,c), the existence of an important difference
between the CE and collaboration, which are frequently mismatched terms
or taken as synonyms, is further clarified. Therefore, there is a need for
distinguishing the semantic contents of these two concepts, besides the
necessity to distinguish these two from others, also more or less closely
related ones, for instance, about simultaneous or parallel engineering
(Putnik and Putnik, 2019). Therefore, it is of utmost importance to notice
and understand that in the M&M context, collaboration is mainly driven by
new, emergent, organis ational, and management concepts that refer, for
instance, to new features required for the engineering design, and regarding
organis ational and management issues and approaches.

According to Putnik et al. (2021b), the two new emerging theories,
paradigms, and approaches that inform engineering design and practice, and
on which base the definition of our CollEng is proposed, are the complexity
theory and semiotics, and in particular the complexity management in
organis ations and organis ational semiotics (Putnik et al., 2021b). Thus, in
a broader sense, the CollE, can also be seen as a new engineering design
approach (Putnik et al., 2021b; Abbass et al., 2018).

Main remarks

e Concurrent engineering can be considered a lower level of
collaboration

e The human, and co-learning are fundamental to enable a higher level
of collaboration

e Multidisciplinary teams enrich collaboration



e Different views, arguments and opinions, and dialogue favours or
promotes collaboration

e Unlearning and dissipation can be necessary to permit true
collaboration

e Small teams facilitate collaboration while easing reaching a common
understanding and consensus

e (Collaboration enables and promotes sustainability, based on real

innovation, openness and emergence of ideas and knowledge.

Conclusion

Collaboration, is a term that has been frequently used but many times it has
been mismatched with other, more or less closely related ones, for instance
with concurrent engineering, which although having some similarities, is
quite different in nature. This frequent misunderstanding about
collaboration, namely about its application in engineering and industrial
areas, has motivated this chapter, in order to contribute to the further
clarification of the collaboration paradigm, based on an SLR, along with a
refined proposal of a collaboration conceptual model.

The collaboration concept proposed includes two main levels, the fist one
regarding the necessity to satisfy the underlying connection, communication
and sharing sub concepts, and the second, higher level one, about the
accomplishment of learning (co-learning), and co-creation, for enabling a
full or complete level of the proposed collaboration concept, along with
some kind of application or implementation, regarding its consideration in
terms of collaborative engineering—manufacturing and management (Coll-
M&M).

Through the study carried out, based on the SLR methodology used, it
was possible to realis e the importance of the human role, not just in the
context of CollE-M&M, but further in the Industry 4.0 (14.0).



Learning was also shown to assume a fundamental importance in
collaboration, namely in CollE-M&M. It was also possible to realis e the
importance of collaboration (CollE-M&M) in the 14.0, and of the digital
and technological support arising from the 14.0 in promoting or enabling
CollE-M&M.
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2
Relation between Collaborative Engineering
and Sustainability in the Industry 4.0
A Human-centred Vision

Collaboration in the digitalization era 1s of utmost importance, as it enables
sustainable development in Industry 4.0 (I14.0) context. Collaboration is a
concept widely used, being applied in quite different contexts, varying from
a more theoretical perspective to some more practical ones, and from
technological scenarios up to organisational, business, manufacturing, and
decision-making and management processes and practices. In this chapter a
general view over different approaches and application scenarios of the
collaboration term is explored, along with an overview of the main topics
that have been explored worldwide correlating collaboration with
sustainability in 14.0, supported by a systematic literature review.

As a result, it was possible to realise that the widened portfolio of
contributions in the literature can be grouped and synthesised through a
proposed framework, including three main blocks about models, tools, and
business approaches about collaborative manufacturing and management in
14.0 to reach sustainability goals. It was also possible to recognize that
learning, and further, co-learning are key issues correlating collaboration
with the 14.0, along with the human factor, which assumes a central role for
linking these two domains, which combined, are of utmost importance to
enable companies to reach a sustainable development in the current
digitalisation era. The main limitation of this study is related to the broad
spectrum of topics underlying the three domains, thus requiring further

developments, to be able to encompass detailed analysis and further



correlation of them, for instance, regarding the analysis of the industrial
understandings on the importance of communication, and learning, thus
collaboration approaches, along with their impacts, for the promotion of a

sustainable development of companies in the current digital age.

1. Introduction

Collaboration, along with sustainability concerns, regarding the social, the
economic, and the environmental focuses, is not new, although assuming a
new importance currently in the digital era, as has been expressed through
several different authors, regarding different perspectives and aims, and
some main ideas are summarised next.

The authors in (Abbass et al., 2018; Fernandez-Caramés et al., 2018;
Hippertt et al., 2019) mention that Human-centred design is an approach to
system design and development that aims to make interactive systems more
usable and useful by focusing on their use by operators and their
requirements within a collaborative industrial environment. Thus, the
authors argue that their proposed approach enhances effectiveness and
efficiency, improves human well-being, user satisfaction, accessibility and
sustainability, and counteracts possible adverse effects of use on human
health, safety, and performance.

Bello et al. (2019) refers to contributions of a special section focusing on
embedded and networked systems for intelligent vehicles and robots. In this
work, it is mentioned that embedded and networked systems for intelligent
vehicles and robots are expected to have a significant economic, societal,
and technological impact on industrial and automotive applications. Further,
it 1s said that among the aspects that will benefit from these technologies the
first one is safety, thanks to the reduction of accidents caused by human
errors. Moreover, another issue considered is the positive effect expected on

sustainability, due to the increase in transport systems efficiency. Also,



comfort and inclusiveness i1s mentioned to be improved, ensuring users’
freedom for other activities and “mobility for all . The authors assert that
logistics and factory automation are among the main areas that will take
advantage of intelligent vehicles and robots that are expected to play a key
role in 14.0, where intelligent vehicles and industrial robots will move and
operate autonomously and cooperatively.

To clearly expose the main contents of this chapter, it is organised as
follows. In Section 2, the relation between collaboration and sustainability
in Industry 4.0 will be briefly explored. Section 3 will focus on the
importance of the human role in the current digital age. In Section 4, a
proposed human-centred collaborative engineering management framework
will be briefly presented. In Section 5, a summarised discussion on the
relation between collaboration, sustainability, and 14.0 will be put forward.

Finally, in Section 6, some main conclusions will be presented.

2. Relation between Collaboration and Sustainability in
Industry 4.0

The term collaboration, as mentioned before, implies many different
subterms, regarding diverse kinds of underlying collaborative processes or
practices (Putnik et al., 2021a,b; Ferreira et al., 2022).

According to an extended literature review and study conducted, it was
possible to reach a set of considered most relevant and closely related
collaboration terms. Centred on this study, Figure 1 was created based on
the set of 287 valid contributions reached, to synthesise the most relevant,
best known or more frequently referred terms, besides the term
‘Collaboration’ itself, and other more or less similar ones, which are also
used, such as: ‘cooperate’, ‘co-work’, ‘co-learn’, ‘share’, ‘co-create’, ‘co-

design’, or some similar or equivalent ones, among others.



Figure 1. Collaboration and some other more or less closely related terms frequently
used (adapted from: Varela, Putnik, & Romero, 2023 ).

Therefore, there are some other terms, more or less closely related to
collaboration, and which are also frequently used, for instance, to mention
some core aspect or characteristic of a process or a practice, which is, to
some extent, related to collaboration, such as: ‘Communication’,

‘Dialogue’, ‘Share’, ‘Give’, or ‘Serve’, among others, as shown in Figure 1.

The Importance of the Human Role

Nowadays, in 14.0, the human importance in collaboration is highlighted, as

expressed in Figure 2, in which the human assumes a central position, as



being considered a fundamental vehicle or element to accomplish
collaboration in 14.0, besides its fundamental role, along with collaboration,
as a whole, in enabling or promoting sustainability. It is considered that

there 1s no true sustainability without collaboration (Manupati et al., 2022).

Sustainability

CollM&M < » 4.0
m
— Co-thinking Al 8
_E Co-designing I[l]eT
8] Co-planning Agility 8
(@] Co-programming Assistance
N Co-controlling HC M & P Digitalization 3
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Cooperating Distribution

Co-maintaining and Practices Automation

Environmental

Figure 2. Correlation between ColIM&M and 14.0 in the scope of sustainability
(adapted from: Varela et al., 2023).<

Collaboration is thus considered to be of utmost importance in the current
digitalization era, along with the human role, being of prime importance in
the 14.0. Besides, as mentioned in (Putnik and Putnik, 2019; Ferreira et al.,
2022; Manupati et al., 2022), there is no true collaboration without learning,
which also assumes a major role currently in 14.0, and the human is the
fundamental vehicle to enable and promote learning, for further reaching a

sustainable development of companies, as expressed through Figures 2 and
3.



. Industry 4.0
Sustainable ’

Development
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Figure 3. Relation between collaboration, learning, and the human role in 14.0 for
reaching sustainable development (adapted from: Varela et al., 2023).d

Figure 3 expresses that reaching sustainable development in companies
requires collaboration, which, in turn, requires learning or colearning, and
further the human in the loop.

Additionally, in Figure 3, the human-centred practices also assume a
fundamental role for enabling ColIM&M and 14.0 correlations and further a
sustainable development of companies, while collaborating through
different kinds of collaboration processes and practices, the so-called Co-X
(Sousa et al., 2021), which, for instance, include co-working, co-learning,
co-designing, co-maintaining, and co-deciding, among others. All these so-
called Co-X are supported and further promoted by a widened range of 14.0
approaches and technology, such as: I[I]oT, digitalization, servitization,
virtualization, networking, etc.

In this regard, it is important to highlight the central role of collaboration

and the human interactions, arising through multidisciplinary scientific and



technological domains, to enable and promote mutual learning and enriched
theoretical and managerial developments and practices, by using suitable
models, methods and approaches, through diverse kinds of means, tools,
systems and platforms, to enable sustainable CollM&M in 14.0 (Liu et al.,
2019a,b). Thus, a special focus relies on human-based collaboration,
supported or enhanced and fostered by 14.0 technology (van Eijnatten and
Putnik, 2004; Putnik and Putnik, 2019; Putnik et al., 2021a,b,c; Manupati et
al., 2022).

A widened set of works do mention the importance of the human role in
collaboration, particularly nowadays, in 14.0.

One frequently mentioned key aspect underlying collaboration, for
instance, in Li and Qiu (2006) and Wang et al. (2002), is related to the
possibility of augmenting the capabilities of individual specialists, along
with the enhancement of their ability to interact with each other and with
computational resources.

The authors in Li and Q1u (2006) state that a collaborative mechanism of
a system is needed for a specific design along a distributed architecture to
meet the functional and performance requirements imposed, through
sharing diverse and complex forms of information, further supported by a
multi-disciplinary design team and integrating heterogeneous application
services.

The frequently mentioned parallel and synchronous characteristics,
alongside the importance of interaction and multi-disciplinary issues,
regarding the joint working teams, which are, in fact, fundamental ones,
also in CE besides its importance in the collaboration scope.

Besides the enrichment that arises from the interaction underpinned by a
multi disciplinary team in or for promoting interplay and constructive and

diversified discussion between entities or stakeholders, there is no real need



to force the existence of big or complex multi disciplinary teams in
collaboration, because although this being important in CE, it is not a must
or even important for enabling co-learning or co-creation, in CollEng. In
fact, quite heterogeneous and/or complex teams can even be a problem in or
for promoting collaboration, which are usually better suited or established
when occurring in more contained, simpler, or in lower dimension groups
of interacting people.

The authors in Longo, Nicoletti and Padovano (2017) say that 14.0
requires human operators with experience to face increased complexity of
their daily tasks, requiring them to be highly flexible and to demonstrate
adaptive capabilities in very dynamic and smart working environments.
Therefore, there is a necessity for tools that can be easily embedded into
everyday practices of operators, to enable them to combine complex

methodologies with high usability requirements of the tasks.

3. Human-centred Collaborative Engineering Management
Framework

Currently, in the digital era, collaborative engineering and management,
centred on the human, assume a core importance for enabling a sustainable
development of organisations.

Thus, another study was carried out to reach main findings regarding the
state of the art about the importance that has been given to the human role,
regarding collaborative methodologies and practices in the current digital
era.

The reached outcomes of a deep study conducted will be summarised
next, and further expressed through a general view over different
approaches and application scenarios of the collaboration term, along with a
set of the main topics that have been explored worldwide correlating

collaboration with main 14.0 dimensions or pillars, based on an SLR.



Consequently, in this section a framework is presented for synthesising
the main correlations between ColIM&M and 14.0, based on three main
issues, about models, tools, and business axis, due to the importance that
these two scientific and technological domains assume together in the
current fourth industrial revolution, further aiming at a sustainable
development of companies, namely, industrial ones.

Thus, the Collaborative Manufacturing and Management Framework in
Industry 4.0 is briefly described next, along with the main findings reached.

One of the most difficult problems arising in the context of engineering
and industrial management science, besides the problem of data collection,
is related to information processing, which, under the scope of 14.0, has to
be achieved on a real-time basis. In this context, interoperable and
interactive software-based systems have to support business and
organisational decision-making activities, varying from a purely automated
to a human interaction based decision process, relying on automatically
acquired information, its processing and further analysis and use. These
processes require the selection and compilation of information, according to
underlying business models and objectives and within several kinds of
manufacturing processes, to accurately and promptly solve engineering and
industrial management problems in companies.

In this regard, it is our conviction that collaborative M&M processes and
practices will enable the promotion of a successful 14.0 era, by innovating
through the integration of several interdisciplinary areas, enhancing
synergies between them, in order to maximise the effectiveness and
efficiency resulting from those synergies.

The proposed ColIM&M framework thus includes a set of three main
models, regarding the development of models, the use of a set of tools, and

business approaches and methodologies, as the full multidisciplinary



coverage of scientific and technological domains promotes the development
of methodologies, approaches, and tools for enabling a sustainable
development of companies through CollIM&M processes and practices in
14.0:

e models-team: from projects, models, and plans to the development of
14.0 approaches;

» tools-team: model development, specification, analysis, and validation;

e business-team: feasibility studies for the practical implementation of

proposals in an industrial engineering context.

The proposed framework does thus aim at enabling deep insights and a
more organised or structured analysis regarding the interrelation and mutual
benefits regarding the interaction or relation between collaborative M&M
and [4.0 dimensions previously referred in Section 3, and further based on
the deeper analysis carried on the subset of the considered most relevant
publications in the focused domain, regarding the analyses and study
performed.

In this regard, approaches oriented to the integration of collaboration
concerns, along with 4.0 requirements oriented to some specific
methodologies, and based on knowledge transmitted on the corresponding
scientific area through fundamental methods, have to be considered or
specified to develop appropriate conceptual models for specific application

contexts, as illustrated through Figure 4.
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Control Application Economic and Quality
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Figure 4. Human-centred collaborative framework for integrating 14.0 oriented models,
tools, and business issues in the M&M domain (adapted from: Varela et al., 2023).

The use of diverse kinds of models and tools, based on appropriate
approaches, will allow putting into use collaborative M&M processes and
practices, by combining different kinds of paradigms, along with
appropriate research, and scientific methods to enable a strategic,
multidisciplinary, and holistic vision in a focused project. It is also
important to be able to further analyse and validate the specified models
used, for accomplishing each particular objective regarding the application
of this framework in a specific [4.0-oriented company or research context.

The models and specific tools, along with appropriate collaborative
platforms, have to be conceived, oriented to some specific application
domain, which will enable the analysis of underlying business models

through economic analysis and feasibility studies for implementing



proposals, in parallel with the application of quality analysis approaches
and techniques.

This collaboration framework is highly recommended to be put to work,
enabling collaboration, as a central concern in the 14.0. Most proposals have
a clear direction or concern in putting into practice models and tools or
platforms regarding scientific and technological objectives, but other
aspects, for instance related to the business itself and the underlying
organisational structures, have had less visibility or expression, although
having gained increased attention lately, through more recent contributions
to the 4.0 concept.

Thus, although it is more or less consensual and undoubtedly that the
scientific and technological domains are of utmost importance in 14.0, a
higher focus and effort has been put to bring other subjects into analysis,
namely, regarding contents related to business and organisational models in
companies, along with the underlying tools and technologies, which are of
utmost 1mportance nowadays. Thus, within the 14.0 it is important to
encompass a more significant emphasis on models covering organisational,
management, and production systems aspects, in particular, while also
betting on technologies and tools considered fundamental ones to fully
satisfy the current requisites imposed by the 14.0, for instance, regarding the
scientific area of engineering and industrial management, in which the
human role assumes a fundamental relevance, promoting co-learning, and
thus sustainable processes and practices in the 14.0 (Peruzzini et al., 2017,
Varela et al., 2022; Putnik et al., 2021a,b,c).

In this regard, it is noticeable that fully integrated collaborative M&M
processes and practices have to be further promoted, based on a deeper
multidisciplinary attitude and, consequently, endowing it with an even

broader and more complete nature, in order to cover, even more



transversally, the whole set of main 19 I14.0 dimensions previously
summarised in Section 3, and by further exploring them in the current 14.0
context, based on collaboration principles along side with 14.0 enabling
technologies and tools, as intended through the proposed CollEng-14.0
framework.

The main objective of the general collaborative framework oriented to
14.0 proposed is to put professionals in Engineering, along with the ones
arising from other domains, including scientific and technological ones, and
more specifically in the area of industrial and systems engineering, aware of
the necessity to collaborate.

We believe that with appropriate skills and by combining them with other
skills, engineers and industrial engineers will continue to play a
fundamental role, not just in fulfilling specific and differentiating
requirements underlying [4.0, but also in terms of integration of
heterogeneous competences, for properly putting to work and manage
production systems, including SP[P]S, and, in this regard, collaboration
competences are fundamental to be held through multidisciplinary teams.

Therefore, the proposed collaboration framework includes three main
underlying areas or axes related to models, tools, and business. This
framework is a novel contribution to the field, by considering several recent
domains of the [4.0, along with its integration in a collaboration
perspective, based on fundamental requisites, related to the necessity of
interaction, including the expected scientific and technological gains arising
from the integration of other areas, such as informatics and computer
sciences with areas of industrial and systems engineering, aligned with 14.0,
and underlying Al requirements, among others through business strategies

alignment, from design to implementation.



The proposed ColIM&M-I4.0 framework further aims at raising the
consciousness among professionals dedicated to the conception and
development of innovative ideas and projects, from the initial idea to the
placement and validation of solutions on the market. To this end, a
collaborative framework for 14.0 will allow the development of
multidisciplinary competencies, through the interaction of professionals
from diverse areas or competencies, namely in the context of industrial
companies, in order to provide a more effective and efficient transfer of
knowledge and technology, promoting mutual development and
valorisation, based on learning organisation principles, while contributing to
the promotion of innovation, entrepreneurship, and regional, national, and
international sustainable socio-economic development, while paying further

full attention to environmental issues.

4. Discussion on the Relation between Collaboration,
Sustainability, and 14.0

Collaborative Manufacturing and Management is a key issue in the context
of a sustainable Industry 4.0, along with the emerging new paradigms and
practices arising in the underlying Cyber Physical Systems.

The emergence of new technologies for communications, processing, and
analysis support, together with new physical devices (sensors, controllers,
actuators), increasingly able and innovative systems to explore them, and
made the smart and sustainable attributes really emergent and relevant
topics on manufacturing business models.

The capacity to have multiple agents working together, i.e., cooperating
and, mainly, collaborating, requires the existence of dynamic and efficient
interoperability practices. One of those practices is the in-time and
continuous collaboration between all those expected manufacturing agents,

namely humans, machines, and processes. Collaboration can be



connectivity or systems integration in a technical perspective or it can be
effective communication between humans-machine-humans or only
humans, instead.

Furthermore, in the current 14.0, according to (Finance, 2015; Hankel and
Rexroth, 2015; Xu et al., 2018), manufacturing and management (M&M)
paradigms, methods, and tools should be wisely developed to fulfil
sustainability issues, regarding not just economic but also social and
environmental concerns by simultaneously fostering organisational
efficiency excellence and transformational initiatives, therefore contributing
to enduring business results (Fonseca et al., 2021).

Thus, collaboration is an important paradigm that implies an interaction
between two or more entities, and though the fundamental inclusion of the
human, based on multidisciplinary working teams, sustainability goals can
be properly approached and favourable outcomes can be reached, either in
academy or industrial and general social levels.

The term co-learn (Arrais-Castro et al., 2015; Ferreira et al., 2022; Putnik
et al., 2021a,b), assumes thus a core importance to reach the sustainability
requisites stated, particularly in the 14.0. In the context of collaborative
M&M, this paradigm is applicable between any two or more entities, which
includes not just common manufacturing resources or machines (M-M) but
also humans (H-H) and their interaction with the machines (H-M) (Ferreira
et al., 2022).

The 14.0 1s characterised by a widened set of other paradigms, methods
and tools that can promote sustainability in manufacturing systems, with
flexibility as one important aspect (Reddy et al., 2017). However, this
flexibility cannot just arise directly from the flexibility underlying the
manufacturing resources but also from other perspectives, namely, through

the flexibility subjacent to the manufacturing systems itself, while enabling



quick adaptation of the production under dynamically varying conditions.
These requisites arise either internally, in the factories, or from the outside,
namely, regarding the need to fulfil the customers’ expectations or needs
(Arrais-Castro et al, 2015; Putnik et al., 2021a,b; Reddy et al., 2017; Varela
etal., 2014, 2018, 2019).

Although not new, the simulation technique has also been gaining a
refreshed importance nowadays in the 4.0, being one of its main pillars
(Canadas et al., 2017; Putnik et al., 2015; Rodi¢ 2017). Simulation is a very
versatile technique that enables the implementation of different methods by
using various software and tools, which can be easily adapted to the specific
needs of the manufacturing systems (Canadas et al., 2017; Rodi¢ 2017).
One such need consists of supporting manufacturing management (Canadas
et al., 2017; Rodi¢ 2017; Varela et al., 2003; Varela et al., 2008) to reach
appropriate solutions in manufacturing systems, varying from make-to-
stock (MTS) to make-to-order (MTO) production philosophies, such as
engineer-to-order (ETO) and design-to-order (DTO). In this regard,
advanced simulation, along with other management approaches and
systems, for instance, based on game theory, and other advanced and
integrated optimization approaches, namely, for chaos and complexity
management, based on distributed, collaborative, and real-time
management principles, are of utmost importance nowadays, in the 14.0
(Alves et al., 2021; Eijnatten and Putnik, 2004).

In the context of 14.0, another important issue starts with the capability of
designing smart products and advanced materials, and/or production
systems based on concurrent and collaborative engineering, e.g., on open
design and advanced design theory. In this regard, metatheory, formal

theories, and formalisms, along with learning organisation principles,



organisational semiotics, and standards, are relevant nowadays (Eijnatten
and Putnik, 2004).

Key issues

e The importance of the human as the main agent to allow and promote
learning (co-learning) and, therefore, as a fundamental element in the
concept of collaboration, and additionally as a link that closes the
circle of sustainable development of organisations in the digital age.

e There are different forms of collaboration, and require the existence of
awareness, openness, flexibility, and agility to enable effective co-
learning between two or more entities.

e New technologies are facilitators and support collaboration, and are
therefore of paramount importance in the current digital age, further
promoting and enabling a sustainable development of companies (Liu
et al.,, 2019). However, collaborative processes and practices, in
essence, do not require the existence of the new technologies
underlying the Industry 4.0, in which humans are becoming
increasingly more important in technology monitoring and control
(Brettel et al., 2014), and it 1s expected a growing need for
requalification of human skills, and the enrichment of its competences,
towards multidisciplinarity to reach the so-called “knowledge worker”
(Van Laar et al., 2017).

e Collaboration within and between organisations can occur at different
levels and in different ways, ranging from design phases regarding
product, production systems, processes, methods, and tools to support
manufacturing and management, regarding internal and external
logistics, including extended processes and interoperation among

companies, and interactions with suppliers, business partners, and



customers, based on appropriate business models, technology, and
management paradigms and approaches through extended networks of
stakeholders.

In the considered collaboration concept, collaborating entities need to
reach a common understanding for consensus building about
something (Schrage, 1990; Putnik and Putnik, 2019; Putnik et al.,
2021b,c; Varela et al., 2022 a,b,c, 2023a,b).

Collaboration 1is extremely important in engineering and industrial
management processes and practices in the current era of
digitalization, in order to guarantee and promote the sustainable
development of organis ations, at the economic, social, and
environmental levels, based on consciousness, and transformative
change of stakeholders (Putnik et al., 2021b,c; Varela et al., 2022 a,b,c,
2023a,b).

Several methodologies and technologies are mentioned in the literature
for supporting geographically dispersed teams or entities within or
between organisations that collaborate in order to share data,
knowledge, tasks, and processes, namely in production (Li and Qiu,
2006; Knoben and Oerlemans, 2006; Bilberg and Malik, 2019), and an
important aspect consists on maintaining small teams, as well as a
contained quantity and variety of collaborative actions, as a way of
facilitating collaboration processes, when trying to reach a ‘consensus’
since each act of collaboration has distinct requirements (Draulans et
al., 2003; Putnik and Putnik, 2019; Varela et al., 2022,a,b,c; 2023a,b).
However, there are still some concerns and difficulties to overcome in
the implementation of collaborative processes and practices in
organisations, namely, in terms of safety (e.g., humans co-working

with machines), complexity, and security in data transferring, sharing,



and processing, including appropriate procedures and tools, along with

platforms for supporting the interaction in and between companies.

The importance of the human role to link collaboration processes

and practices in 14.0, can be pointed out as follows:

e the human assumes a central importance to promote and enhance
collaboration in engineering processes and practices, regarding
collaborative manufacturing and management (CollIM&M);

e sustainable manufacturing and management has to consider the three
economically, social, and environmental dimensions;

e collaboration approaches can be enhanced and reinforced through the
use of high scientific-technological knowledge and tools, including
appropriate software and platforms for properly supporting companies
and organisations in 14.0;

e transversal skills and competences have also to be further developed,
through corresponding multidisciplinary teams;

e New technology can support and promote high performance
collaborative engineering and sustainable processes and practices (e.g.,
collaborative management) for the empowering companies, and

society, in general, in the digital era.

5. Conclusion

In this chapter the main pillars of a proposed collaborative framework were
presented in the light of collaborative processes, practices, tools, and
platforms in the Industry 4.0, aiming to enable and promote a sustainable
development of companies and society. In this regard, the main requisites of
the framework for envisioning the collaborative processes and practices

were explored, and shortly described and discussed, to highlight some main



collaborative applications, in different kinds of contexts and domains,
namely industrial ones.

The proposed framework for collaborative processes and practices in the
14.0 was thus briefly analysed, to reach a set of main issues, considered
relevant, namely, in existing decision-making processes and platforms,
based on an extended literature review and study conducted. Through this
study it was possible to realise the value added of the proposed
collaborative practice framework, to promote and reinforce collaboration
and sustainability in the 14.0.

As future studies, i1s planned the complete development and
implementation of the proposed framework, for being further applied in real
life manufacturing application scenarios.

Summarising, this study did enable us to clarify the importance of
collaboration, for instance CollEng-M&M, in the current digitalization era,
in order to promote a sustainable development of companies, namely
industrial ones, regarding not just economical, but also social and
environmental issues. In the current 14.0-oriented CollEng-M&M context
the essential importance of the human in the loop was clarified, along with
its learning capabilities, for which the ICT-oriented support, subjacent to the
14.0, was also visible for enabling and promoting collaboration.

Besides the awareness of the importance of collaboration (CollEng-
M&M), some difficulties or concerns do persist nowadays, for its successful
practical implementation in companies, namely in industrial ones, for
instance regarding human-machine or more specifically human- robot
collaboration, mainly to ensure appropriate and secure working conditions,
among other concerns and restrictions, which have to be further explored

and focused, as this kind of collaboration has been gaining a primer



importance in the current digitalization era, and has been already mentioned
to be also a further main pillar in the Society 5.0.

Based on the study conducted, it was thus possible to reach a set of
clusters of key terms that did enable us to synthesise the proposed
ColIM&M framework, which integrates three main blocks about models,
tools and business approaches.

The proposed framework enables to integrate and synthesise the main
issues regarding collaborative M&M processes and practices, in the 14.0.
This is an important contribution, due to the relevance that these two
scientific and technological domains assume nowadays, when combined, to
further enable a sustainable development of companies, namely in the
industrial context.

As previously exposed, the concurrent and collaborative engineering
concepts are frequently mismatched in the literature, namely by imposing
the existence of a common goal, for instance, between two or more
companies, while cooperating in some kind of manufacturing or
management process. Although, as mentioned in (Putnik and Putnik, 2019;
Putnik et al., 2021a,b,c; Ferreira et al., 2022; Manupati et al., 2022; Varela
et al., 2022), and further described in the first chapter, this is actually one
main difference that enables to distinguish both concepts or M&M
paradigms, and further promoting innovation, by the emergence of new
approaches and solutions, thus contributing to the enrichment of
interactions or inter play among companies, and thus, promoting their
sustainable development, based on the central human role, and its
learning/co-learning potential, which can further be enriched through the
fundamental support provided by the current approaches and technology

underlying the 14.0.



The main limitation of this study it related to the broad spectrum
underlying the combination of subjects arising from both domains
(ColIM&M and 14.0) combination, which was studied based on literature
available through the b-on database, thus requiring further developments, to
enable covering a broad range of applications scenarios and its detailed
analysis, namely through some case studies, to reach additional conclusions
and a full research concept validation. Such a deed analysis will further
permit analysis of industrial understandings about the importance of
collaboration issues, along with the importance underlying communication

processes and supporting Industry 4.0 technology, among other issues.
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3
Contextualization of Collaborative
Engineering
Manufacturing and Management in the Industry 4.0

Collaborative engineering—manufacturing and management—is crucial in
the current digitalization era, to permit and promote a sustainable
development of companies, either traditional or extended and networked
organizations, including cyber physical systems.

This chapter aims at putting forward higher-quality technical-scientific
content about fundamental methodologies, models, methods, tools, and
platforms about collaborative engineering, to support manufacturing and
management processes and practices, aligned with the current requirements
underlying the Industry 4.0, and the Society 5.0 principles and aims.

To this end, this chapter focuses on the exploration and application of
collaborative management paradigms about dynamic, distributed,
integrated, intelligent, predictive, parallel, and real-time based approaches
and tools to enable collaborating entities, including suppliers, business
partners, and other stakeholders, to develop projects and solve problems
that are becoming increasingly more complex and challenging currently.
Such collaborative processes and practices require companies and
underlying stakeholders to be connected, and to further communicate, and
share data, problems, and expertise, and other kind of resources, along with
concerns, difficulties, and challenges, requiring co-learning, and the co-
creation of knowledge, processes, methods, and systems to interactively

support projects and problems solving.



In this chapter, advanced ideas and works compendium supported by
literature review studies, along with dissertation and Ph.D. work, besides
other case studies will be summarily provided, to assist scientists,
practitioners, and students in high standard manufacturing management
processes and practices, to properly handle their daily base problems and
challenges, with a special focus on the use of recent paradigms and tools to
support manufacturing management decision- making, through innovative
methodologies and approaches for permitting researchers to learn, develop
further work, and become advanced practitioners and promoters of

collaborative management.

1. Introduction

Industry 4.0 represents the current trend in the manufacturing industry,
where manufacturing, and management is to be performed within a highly
connected and smart environment and in a collaborative manner, for
enabling improved and sustainable companies, and society.

Diverse literature studies were carried out by various researchers,
including master and Ph.D. students, to realize the importance of
collaboration in the current digitalization era, on one hand, and on the other
about the importance of recent approaches and technology for enabling or
promoting collaboration. Main current practices of human-centered and
more autonomous machine-machine approaches and applications of
collaboration in engineering, for instance, in manufacturing and
management domains, which will be shortly described in this chapter, along
with main difficulties and further open research opportunities on
collaboration.

To properly contextualize collaborative engineering, manufacturing, and
management (CollE-M&M) in the Industry 4.0, a systematic literature
review (SLR) was performed with the additional purpose to further



correlate CollE-M&M methodologies and practices with 14.0 principles,
approaches, and technology, including models, methods, and tools, based
on a set of considered most relevant publications found in the literature,
which were selected according to its relevance in the context of the
underlying collaboration concept defined. Thus, the main research question
focused in this study was the following: “What are the main relations
between CollE-M&M and 14.0?”

To arrive at an answer or, at least, to bring some insights into
consideration about potential correlations between CollE-M&M and the
14.0, this chapter will be organized as follows:

In Section 2, some main considerations about collaborative
manufacturing and management in the 14.0 will be explored. In Section 3, a
synthesis of the main 4.0 topics approached on collaborative
manufacturing and management will be presented. Further, Section 4
summarizes the main collaboration dimensions in the 14.0. In Section 5, a
final discussion on collaborative manufacturing and management in the 14.0
is provided, and finally, in Section 6, main conclusions are provided along

with some insights regarding open future research on the focused domain.

2. Collaborative Manufacturing and Management in the
Industry 4.0

To explore the main contents underlying this chapter, some information
about main approaches, models, methods, and tools, including traditional
systems, alongside platforms for enabling collaborative engineering,
processes, and practices in the current 14.0 will be synthesized. This
synthesis and analysis is considered important nowadays, to enable a proper
understanding about the correlation of the collaboration and Industry 4.0

domains, which are both of utmost importance in the current digitalization



era, namely, in the industrial (M&M) context, and for promoting a
sustainable development of companies.

In Bechtold and Lauenstein (2014), it is referred to the current industrial
revolution as being characterized by the cooperation or collaboration of
intelligent machines, storage systems, production systems, and people into
intelligent networks, merging the real and virtual worlds through
cyberphysical systems (CPS). The authors further state that these CPS
integrate information technology (IT) systems with mechanical and
electronic components connected to online networks that allow the
communication between machines in a similar way to social networks, and
these innovative technologies enable factories to become ‘smart’ resulting
in productions of customized products on an industrial scale while
providing many opportunities for improvements in operational flexibility
and efficiency, including with human work, as further mentioned in
Kaasinen et al. (2020); Varela et al. (2021); and Putnik et al. (2021 a).

In Louw et al. (2018), 1t is referred that the FoF will make use of
actuators, sensors, and CPS to provide an environment in which humans,
machines, and resources will communicate as in a social network. The
authors consider information flow a key enabler of such FoF. Further they
state that industrial engineers, as designers and improvement agents of such
FoF, will need to develop better skills in various aspects of data analytics
and information communication technologies.

Moreover, the authors in Bechtold and Lauenstein (2014) mention that
CPS’ influence on the human factor is linked through four elements: (1)
tools and technologies, (2) organization and structure, (3) working
environment, and (4) organizational cooperation. They consider that the
FoF will increase the need for skilled digital work, that there will be a

decrease in the need for manual work, and that the workers will be provided



with the exact information needed, in real time (RT), to perform properly
and efficiently execute tasks. Thus, intelligent systems will further make it
possible for the worker to make qualified decisions in a shorter time. Also
that CR will share a workstation with humans, and that these robots will
support them, for example, in situations that are critical regarding
ergonomic conditions. Besides that, intelligent tools and technologies will
become more autonomous and automated, but the supervision and efficient
application of machines by humans will become more important than ever
before.

As referred in Chen et al. (2016), intelligent industrial ecosystems enable
the collection of massive data from various devices (e.g., sensorembedded
wireless devices) dynamically collaborating with humans (Varela et al.,
2018). According to the authors this is essential to improve the efficiency of
industrial production/service. In this paper, the authors propose a
collaborative sensing intelligence framework, combining collaborative
intelligence and industrial sensing intelligence, which they state facilitates
the cooperativity of analytics by integrating massive spatio-temporal data
from different sources and time points.

In Petrillo et al. (2018), the authors believe and state that a significant
change in the used technologies should and will proceed jointly with a
significant change in organization and structure of companies. In this
regard, the authors mention that workers will be capable of working in
accordance with dynamically available and updated information through
more or less complex data flows that will no longer be necessarily bound or
restricted to a certain production area.

Thus, the new operator skills will be of prime importance to improve job
management by making it more qualified, responsive, and a better informed

DM process, taken remotely. According to the authors, the future working



environment will be an open and creative space. Work will be more flexible
and transparent, more planned, and balanced. The authors believe that the
homework will increase. However, modern assistant systems will provide
the workers with the ability for quick DM despite the increased complexity
of their job contents. Moreover, the authors do further state that the work
will be improved with respect to ergonomics. More precisely, those non-
ergonomic processes are likely to become automated, to improve the
workers’ conditions. In the FoF, intra-organizational cooperation and
communication will be fundamental. Networking and interconnectedness
are focal components of the [4.0. Workers will collaborate and
communicate in real time without borders using smart devices. The Internet
provides the possibilities to meet globally in virtual rooms at almost any
time and to reach out for required information as needed. All kinds of
information and data will be ubiquitous and at the fingertips of the workers
leading to a whole new level of knowledge management. Humans will
communicate with each other and with intelligent machines, and intelligent
machines will also communicate with each other.

Different kinds of CollEng-M&M approaches and platforms have been
put forward during the last decade, and with a refreshed and reinforced
importance nowadays, in the 14.0, for enabling human- centered
collaboration. In this context, Computer Supported Cooperative or
collaborative work (CSCW) is gaining new importance and expression
(Putnik et al., 2020; Putnik et al., 2021 d).

In Li and Qiu (2006), it is stated that collaboration is to establish an
effective communication channel between the upstream design and
downstream manufacturing to enrich the principles and methodologies to
link diversified engineering tools dynamically. Thus, according to the

authors, the future trends for the collaborative systems include, although not



being limited to, the integration of various collaborative manners and
systems.

Their proposed integral system can support interrelated activities and
share domain knowledge between designers and systems to improve design
quality and efficiency. It integrates modules for hierarchical collaboration
that can be wrapped as services for remote revoking. The authors state that
their system enables scheduling and co ordination, which they consider
becoming more crucial and challenging, and to be enhanced through the use
of distributed intelligent algorithms and technologies such as MASs or Web
services for increasing the potential of collaboration.

The authors further mention that research and development have been
actively carried out to develop technologies and methodologies to support
collaborative design (CD) and development systems, and that software
vendors have quickly realized the huge business opportunities in this area,
having been launching to the market a variety of commercial systems to
promote collaboration (L1 and Qiu, 2006).

Therefore, in the scope of collaborative M&M, many different group
decision-making processes can be considered, based on different kinds of
models or methods and tools, which can further be put forward through
different kinds of platforms or systems, frequently referred as collaborative
platforms, networks, or systems (Vafaei et al., 2019).

The so-called collaborative platforms (CP) have been evolving fast,
during the last decade, and can be further improved in the Industry 4.0 (or
14.0) context (Hankel and Rexroth, 2015; Arrais-Castro et al., 2018;
Ferreira et al., 2022). This is due, on one hand, to the rapid development
and spread of the so-called exponential technologies, along with high

performance computational capabilities (Ferreira et al., 2022).



In the manufacturing environments, the Cyber Physical [Production]
Systems (CP[P]S) nowadays play a fundamental role in the context of 14.0
(Hankel and Rexroth, 2015), and provide a basis for promoting CollE,
through [1]IoT ([Industrial] Internet of Things), along with other underlying
technologies, such as RFID (Radio Frequency IDentifiers), the Cloud,
Augmented, Virtual and/or Mixed Reality, and digital twins, along with
smart objects, and many different kinds of sensors, devices, and tools (Lin
et al., 2015; Arrais-Castro et al., 2018; Ma et al., 2019). These tools include
software for providing and processing varying types and amounts of data,
namely big data, in a real-time basis, in order to fully enable integration of
data and processes, and enhance the interoperability among functions and
systems, which is of utmost importance for establishing collaborative
practices (Manyika et al., 2011; Arrais-Castro et al., 2018; Varela et al.,
2018; Ferreira et al., 2022).

Regarding the use of approaches for carrying out joint decisionmaking
processes, different kinds of approaches can also be considered, for
instance, based on group decision-making. For this purpose, several
methods and tools exist for enabling a collaborative decision making
process, including different kinds of multi-criteria methods, different data
normalization techniques, and diverse models and tools for data processing
and analysis, namely, from the Al domain, such as fuzzy data processing
(Arrais-Castro et al., 2018; Vafaei et al., 2019).

The AI- based approaches, models, and tools for collaborative decision-
making frequently fall within the context of the general data science
domain, and are often based on machine or deep learning algorithms, as
well as on fuzzy decision-making approaches, among others (Sousa et al.,
2021).



According to Thomas and Kellogg (1989), human-machine symbiosis in
the Al era, and especially in 14.0 environments, is at its early stages and
there are still many unexplored opportunities. 14.0 enables new types of
interactions between operators and machines (Emmanouilidis et al., 2019;
Rauch et al., 2020). This allows a paradigm shift from independent
automated and human decisions towards a human-Al symbiosis,
characterized by the collaboration of Al and human intelligence (Romero et
al., 2015, 2016, 2017; Guerin et al., 2019).

The authors in Bousdekis et al. (2020) put forward a Human Cyber
Physical System (HCPS) framework for Operator 4.0 —AI Symbiosis and its
main architectural building blocks. Operator 4.0 is defined as being an
“operator of the future”, a smart and skilled operator who performs ““work
aided” by machines if and as needed in an I4.0-oriented environment
(Romero et al., 2015, 2016, 2017). The HCPS concept, building on top of
human automation interaction (Hancock et al., 2013), aims at studying the
symbiosis between humans and Al, in which the human is an integral part
of the CPS.

Further, in Zolotova et al. (2020) is also presented an HCPS, which the
authors consider important for fulfiling the current new demands for
productivity and effectiveness in production. The authors state that a
traditional operator is being transformed to the Operator 4.0, and in their
paper, they describe evolving roles of the operators in the factories, by
mentioning different ways to enhance the operators’ physical, sensing, and
cognitive capabilities, that according to them can be used individually or in
combination to put humans into the center of the current technological
revolution.

There are many other different kinds of technology and approaches that

can be further explored for carrying out some collaborative process or



practice, such as those relying on game theory, learning factory, and social
network or community-based approaches, tools, and platforms (Reddy et
al., 2017; Schuhmacher et al., 2017; Vafaei et al., 2019).

Based on SLR carried out (IJIMSEM 2023), a subset of the 82 most
relevant publications identified in the 5th and last stage of the SLR
methodology applied enabled us to further organize them according to the
main focus regarding models, methods, tools, and business strategies,
approaches, and underlying technology, regarding the relation between
ColIM&M and 14.0, according to the seven main clusters obtained and
previously illustrated through Figure 4, and the information is synthesize in
Table 1, where each contribution identified in the literature is identified by
its title and year.

Table 1 Synthesis of the five main clusters of publication/terms
correlating ColIM&M and 14.0 to enable a sustainable development
of companies (through models, approaches, tools, business
strategies, and underlying technology (adapted from: Varela et al.,
2023).d

Main clusters of key terms

1) (in dark green): Machine/Deep Learning, neural networks, advanced
optimization, models, and systems

2) (in dark blue): Big data analytics, Data science, loT, Blockchain, and
other architectures, networks, cloud, and grid computing, integrated
systems, and other data-driven approaches and technology for supporting
knowledge management, and human-centered activities.

3) (in red): Integrated and concurrent design, trust, performance and
impact evaluation, frameworks, and technology, Simulation, digital twin,
augmented, virtual and mixed reality, game theory, chaos and complexity
management, and other decision-making support approaches, and tools.




Main clusters of key terms

4) (in light green): Artificial Intelligence, including multi-agents,
cognitive, and patterns recognition approaches, along with meta
heuristics, fuzzy logic, etc., HPC, computer vision, automation, CP[P]S,
smart factories, collaborative robots, other 14.0-based approaches and
technology, for enabling high performance manufacturing and computing,
based on flexible electronics, and 2D materials, among others.

5) (in purple): Sustainability, and companies’ life cycle assessment,
Business models and strategies, Integration, flexibility, communication
networks, frameworks, and other technology

In the 14.0 context, according to the study carried out, namely, through
the deeper analysis performed on the set of 82 publications considered the
most relevant ones, synthetized in Table 1, it is possible to realize that there
is currently an ample space and opportunity for conducting collaborative
M&M processes and practices that maximize advantages provided through
the use of models, tools and general technologies, providing additional
capabilities and knowledge, along with best suited business and
organizational models, to be considered on each particular company and
industrial application context.

Typically, regarding the specific M&M scope oriented to 14.0, some main
pillars or dimensions were emphasized, such as the CP[P] S, the i[I]oT,
horizontal and vertical integration, cybersecurity, additive manufacturing,
advanced robotics, exponential technology, Artificial Intelligence (Al), big
data, data analytics (data science), advanced simulation, along with high
performance computing, and other specific scientific areas directly related
to industrial engineering, such as open design, open innovation, metatheory,
formal theories and formalisms, learning organization, organizational
semiotics and norms, new business models, circular economy, finance and
risk assessment and management, organizational change and

transformation, employees, competencies and culture management, along



with Cloud computing, M&M, as well as advanced interfaces, virtual and
augmented reality, digital twin, business intelligence, advanced, integrated
and intelligent supply network management, project and business
management, interoperable and integrated manufacturing, management,
quality, and maintenance systems, advanced ERPs and MES, game theory,
and other advanced and integrated optimization systems, e.g., for chaos and
complexity management, and also advanced energy collection and storage
and decarbonization models and policies, which are relevant subjects in the
context of 14.0 oriented collaborative M&M.

3. Synthesis of the Main Industry 4.0 Topics Approached on
Collaborative Manufacturing and Management
Collaboration M&M issues have been widely addressed in the context of
14.0, namely, through Al-based approaches, such as those based on machine
and deep learning, neural networks, big data, and other data analytics.
Moreover, many other technologies, approaches, methods, and tools have
been explored, for instance, based on simulation, game theory, digital twins,
and many other communication and information technologies with more or
less intelligence capabilities, as illustrated in Figure 3. Figures 3 and 4 were
created by using the VOS viewer software, based on the literature search

process carried out based on the SLR methodology previously mentioned.
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Figure 1. Main key terms correlating Collaboration and 14.0 (adapted from: Varela et
al., 2023).
Source: Main key terms correlating Collaboration and 14.0 (adapted from: Varela et al.,
2023).

The VOS viewer highlights the graphical representation of bibliometric
maps, and, therefore, i1s particularly suitable to illustrate large bibliometric
maps in an easy-to-interpret way (Arici et al., 2021), and can be used to
construct maps of keywords based on co-occurrence data (Eck and
Waltman, 2007).

In Figures 3 and 4, the size of the nodes has to do with the frequency
with which the respective parameters appeared. The links between nodes
represent the simultaneity of the presence of the respective terms. Thus, in
Figure 4, it represents the simultaneity of the presence of terms in the same
document. In Figure 4 can be seen seven main clusters of publications,
grouped by the underlying focused domain, expressed through different

colors.



The most impacting cluster is the one represented in dark green, mainly
focused on machine/deep learning models and systems. The next impacting
one is represented in purple, about the design and performance evaluation
of life-cycle assessment strategies, environments, business models, and
ecosystem services for reaching sustainable development in companies.
Next appears the cluster expressed in red, which represents decision and
communication support technology, including platforms, frameworks, and
simulation models and tools. The following impacting cluster, in dark blue,
refers to advanced architectures, methodologies, and models based on
diverse kinds of recent approaches, namely, based on game theory and
cloud and complexity management. Another cluster, marked in light green,
is related to other Al-based approaches, based on neural networks and
pattern recognition, along with high-performance computing and computer
vision technology, among others. This cluster is focused on data- science-
centered contributions, and further based on IoT, besides integration of hard
and software tools for enabling flexible and interactive decision support, for
instance, through digital twins, and big data analytics, besides other
algorithms, for patterns and performance analysis.

Industry 4.0, Industrie 4.0, or 14.0 for short (Kagermann et al., 2013;
Hankel and Rexroth, 2015) is nowadays a hot topic that is getting increased
attention worldwide, namely, in the manufacturing and management scope
(Hopkins and Siekelova, 2021; Ferreira et al., 2022). The industrial world
revolves around production systems and is currently witnessing this new
experience, the 4th industrial revolution (14.0).

This new industrial revolution has gained an accelerated pace, and it
includes the emergence of new business models (Ibarra et al., 2018).

This could be further detailed by referring to the contribution of novel
Business Models, such as the EFQM 2020, that add a strategic and



technologically unbiased perspective to Industry 4.0 and digital
transformation. These business models provide an integrated framework
aiming simultaneously to deliver performance and ensure transformation,
creating enduring value for its key stakeholders and achieving remarkable
results (Fonseca et al., 2021; Fonseca, 2022; Murthy et al., 2021).

New technologies play a crucial role in 14.0, namely, the so-called
exponential technologies, which are gaining visibility along with new
concepts and principles regarding new models, methods, means, tools, and
platforms for performing production management through improved and
more effective and efficient manufacturing systems configurations and
models, e.g., CP[P]S (Lee et al., 2015; Rodic, 2017).

CP[P]S are being supported by and enable support to new business and
management models through digital networks for a more accurate and real-
time based data, information and knowledge exchange and processing
(Hopkins and Siekelova, 2021; Ferreira et al., 2022), by connecting
manufacturing systems with suppliers, customers, and extended sets of
stakeholders, and business partners worldwide through networks, virtual or
extended enterprises, companies or organizations (Vafaei et al., 2019).
Improved communication means automated data acquisition, processing,
and presentation/ transferring devices, tools, and systems also play a
fundamental role for enabling collaboration (Vafaei et al., 2019; Ferreira et
al., 2022).

Moreover, regarding the relationship between smart factory performance,
IoT sensing networks, and CPS-based manufacturing in Industry 4.0-based
collaborative engineering interesting recent contributions are put forward
(Nica and Stehel, 2021; Novak et al., 2021; Zvarikova et al., 2021) for
implementing and enabling support to new business models and

management tools.



Besides, other main issues related to M&M in 14.0, for instance,
occurring in the Al domain, regarding the relationship between deep
learning-assisted smart process planning, digitized mass production, and
smart manufacturing big data in 14.0-based collaborative engineering is
further focused in Kovacova and Lazaroiu (2021); Riley et al. (2021); and
Hopkins and Siekelova (2021).

An overview of Industry 4.0

The 14.0 concept 1s based on digital transformation in traditional production
and management methods with the introduction of information technology
and it is, according to the identification of Deloitte (2014a), composed of
four fundamental characteristics: vertical integration, horizontal integration,
end-to-end engineering, and orchestration of the value chain by people,
which assumes a central role and importance (Hankel and Rexroth, 2015;
Deloitte, 2014b).

The systems that exist in a factory environment can be integrated at five
levels. The integration of operational data with business data can be aligned
using the ANSI/ISA-95 ISO/IEC-62246 standard ‘“EnterpriseControl
System Integration” (ISA-95) (Prades et al., 2013). This standard
establishes the terminological and functional basis, good practices,
workflows, data flows, and alignment between business systems, e.g., ERP,
and operational control systems, e.g., MES, SCADA (and IoT and CPS
middleware), including IIoT communication protocols, among others
(Prades et al., 2013; Lin et al., 2015; Soldatos et al., 2016; Li et al., 2017).

Global value chain networks are optimized networks that provide real-
time information about geographically dispersed factories facilitating global
management and optimization through extended and globally distributed
resource markets (Arrais-Castro et al., 2018; Vafaei et al., 2019). This

exchange of information and resources increases transparency between



factories and business partners, and promotes a high level of integration,
interoperability, flexibility, distributivity, virtuality, and agility to respond
quickly to varying kinds of requests about specific issues, problems or
failures (Arrais-Castro et al., 2018; Varela et al., 2018a,b).

The shared information ranges from inbound logistics to storage,
production, marketing, sales, and outbound logistics. In this sense, the
history of each product or raw material is recorded and can be accessed
through the factory system and the state of the situation can be shared with
other factories, ensuring constant traceability (a concept known as “product
memory”’) (Carvalho et al., 2016).

It is in the layer of actuators and sensors that a large part of the factory
information, namely from the factory floor, is located. This very low-level
information is then used by other systems (as suggested in ANSI/ISA-95)
(Chen 2005; Prades et al., 2013).

In this sense, the use of protocols adopted worldwide such as MQTT,
CoAP (Constrained Application Protocol), AMQP (Advanced Message
Queuing Protocol), HTTP/2 (Updated version of Hypertext Transfer
Protocol), IPv6 (Internet Protocol Version 6) or 6LoOWPAN (IPv6 over Low
power Wireless Personal Area Networks) is an accepted and appropriate
practice in the implementation of the 14.0 paradigm (Kagermann et al.,
2013; Hankel and Rexroth, 2015; Smit et al., 2016; Xu et al., 2018).

Despite being a relatively recent concept, efforts to standardize it have
already been made in the context of 14.0, which allowed the emergence of a
reference architecture. This architecture was defined by the Industrial
Internet Consortium (IIC), and it is called the Industrial Internet Reference
Architecture (IIC, 2017) (Lin et al., 2015; Li et al., 2017; Liao et al., 2018).

Present in this architecture are concepts related to an Industrial Internet



environment and its interconnections from four perspectives: business, use,
functional and implementation (Lin et al., 2015; Li et al., 2017).

The Industrial Internet Reference Architecture (IIRA) integrates a
security policy for manufacturing infrastructures, hardware, software, and
communication, across the four perspectives presented in Lin et al. (2015)
and Li et al. (2017). Another equivalent initiative is called the Reference
Architecture Model Industry 4.0 (RAMI4.0), referred to in Hankel and
Rexroth (2015). This architecture defines hierarchies for the development
of a unified model of all components of the 14.0 present in the value chain.
These hierarchies refer to the business, functional, information,
communication, integration, and asset layers (Hankel and Rexroth, 2015).

The C[P]PS and smart factories, based on intelligent sensing systems,
open systems, and networked and distributed manufacturing systems, as
well as urban production systems, along with virtual organizations and open
systems, also play fundamental roles nowadays (Canadas et al., 2017; Alves
et al., 2021; Lee et al., 2015; Putnik et al., 2021; Shah and Putnik, 2019). In
such advanced manufacturing systems, integration, distributivity, virtuality,
agility, servitization, digitalization, and decentralization are also major
issues in sustainable and collaborative processes and practices in the 14.0. In
this regard, the [I]IoT, smart and ubiquitous networks based on the cloud,
enable large and complex networks and their digitalization (Varela and
Ribeiro, 2014; Varela et al., 2019; Li et al.,, 2017; Liao et al., 2018).
Decisions and related actions must be taken quickly and are supported by
accuracy monitoring systems (Costa et al., 2021).

Cloud-based computing, manufacturing, and management are thus
fundamental currently for fully proving enhanced flexibility and suitability
for enabling collaboration and effective engineering practice (Ferreira et al.,

2022; Varela et al., 2018). Cumulatively, horizontal and vertical integration



among partners, factories, suppliers, customers, and other businesses and/or
stakeholders is also crucial in the current 14.0 era (Arrais-Castro et al.,
2015).

Additive manufacturing or 3D printing also consists of other critical
enabling technology and principles for promoting collaborative processes
and practices between stakeholders in networked manufacturing
environments. Moreover, exponential technology and advanced processes,
high-performance computing, and disruptive technologies (e.g., automation
and robotics, autonomous and collaborative robots, advanced mechatronics,
micro and nano manufacturing, and supercomputing) are also key enablers
for sustainable manufacturing and management in the current I4.0 context.

Advanced interfaces, virtual and augmented reality, and digital twin,
promoting and enhancing collaboration between entities, are also critical
today. These technologies enable advanced and integrated decision support
systems (DSS) and databases (DB), knowledge engineering and knowledge
bases (KB), automatic data acquisition, and a semantic web for enhancing
collaboration.

There are also other relevant approaches, methods, and techniques in the
14.0, for instance, based on Al, e.g., machine learning and deep learning,
pattern recognition, blockchain, and other technologies and methodologies
for enabling and enhancing manufacturing and management (Putnik et al.,
2021; Shah and Putnik, 2019). In addition, business intelligence, big data,
and data analytics in the specific data science domain are essential pillars of
[4.0 (Manyika et al., 2011).

Moreover, it is also of utmost importance to explore new business and
organizational models, attending to the need inherent to the circular
economy, finance, and risk management in and between organizations

(Prades et al., 2013), that can support organizations simultaneously



managing the present and transforming for the future while responding to
the challenges and opportunities of changing business environments
(Fonseca, 2000). The organizational change and transformation are now
mandatory, regarding employees, their competencies, and culture, to reach
suitable manufacturing and management (Prades et al., 2013). For industry,
the management of 14.0 is a crucial issue and should also be carried out
considering factors of production, directly or indirectly, in order to improve
their performance (Putnik and Avila, 2021).

All these issues are crucial for enabling advanced, integrated, and
intelligent supply networks, projects, businesses, and their integrated and
fully supported management, to reach manufacturing and management
while ensuring high-quality standards, extended to other practices, e.g.,
maintenance and control (Fonseca et al., 2020). To this end, several
different kinds of performance measures and goals should be considered to
reach sustainability, organizational and machine robustness, scalability
systems, and other advanced enterprise information systems (EIS), such as
enterprise resource planning (ERP), manufacturing execution systems

(MES), and systems for supply chain management (SCM).

4. Main Collaboration Dimensions in the Industry 4.0

A varying set of the main 14.0 dimensions, pillars and/ or scientific areas or
domains, and underlying technology, have been put forward during the last
years, as mentioned, for instance, in Kagermann et al. (2013); Deloitte
(2014a,b); Hankel and Rexroth (2015); Ibarra et al. (2018) and Ferreira et
al. (2022). A comprehensive and integrated compilation of this
literaturebased information obtained through the SLR conducted was
performed, and further completed with some additional contribution by the
authors, as presented in Table 2.

Table 2 Synthesis of main collaborative manufacturing and



management dimensions in Industry 4.0 (adapted from: Varela et

al. (2023).4
.Collaboratmn Dimensions Characteristics
in 14.0
Designing smart products,
: D1.1: Open design and | and advanced materials,
Paradigms, : : : :
. innovation strategies, and/or production systems,
methodologies, :
) smart product design, based on concurrent and
and business ) . ) :
: concurrent design collaborative engineering,
strategies

theory, and others

systems and organizations,
and design theory

D1.2: Metatheory, and
Learning Organizations,
organizational semiotics
and norms, pragmatics,
and others

Metatheory, formal theories
and formalisms, learning
organization, organizational
learning and semiotics, and
norms in collaborative
processes and practices

D1.3: New business
models, circular
economy, finance, and
risk
management/assessment,
global resources
management

New business and
organization models and
technology transfer to
companies, attending the
principles underlying the
circular economy, along with
finance and risk management
strategies and approaches

D1.4: Organizational
change and
transformation

Organizational change and
transformation, regarding
stakeholders functions, and
employees, along with their
competencies, culture
management, and sustainable
needs




Collaboration
in 14.0

Dimensions

Characteristics

D1.5: Advanced energy
collection, storage, and
management strategies,
decarbonization, and
other sustainability
policies

Advanced energy collection,
and storage management, and
decarbonization as additional
issues to reach sustainable
collaborative processes and
practices in and between
companies.

Models,
frameworks,
architectures,
approaches,
tools, and
implementation
technology

D2.1: Servitization,
digitalization,
decentralization,
parallelism

Integration, distributivity,
virtuality, agility,
servitization, digitalization,
and decentralization, and
parallelism as major issues in
and for collaborative
engineering

D2.2: C[P]PS, smart
factories, the factory of
the future, advanced
robotics, and
automation, and others

Cyber Physical [Production]
Systems, and smart factories,
based on intelligent sensing
systems, open systems,
networked, and distributed
manufacturing systems; and
further urban production
systems, virtual
organizations, open systems,
along with learning
organizations, and other
technologies for advanced
manufacturing and
management

D2.3: [I]IoT, and smart/
sensing, and
collaborative networks,
and others

[Industrial] Internet of
Things, smart, ubiquitous,
cloud-based, large and
complex networks and
technology aiming at high
digitalization levels




Collaboration
in 14.0

Dimensions

Characteristics

D2.4: Horizontal and
vertical integration

Horizontal and vertical
integration among
stakeholders, including
partners, factories, suppliers,
customers, and diverse
businesses

D2.5: Cybersecurity and
cyber control

Cybersecurity, and cyber
control for establishing
proper connections, and
communications, in data and
information transferring,
sharing, and processing

D2.6: Cloud and grid
computing,
manufacturing, and
management, and others

Cloud based computing,
manufacturing and
management for fully
proving enhanced flexibility
and suitability in
collaborative processes and
practices

D2.7: Additive
manufacturing

Additive manufacturing or
3D printing as additional key
enabling technology and
principles for promoting
collaborative processes and
practices between entities
and stakeholders




Collaboration
in 14.0

Dimensions

Characteristics

D2.8: Exponential
technology, and
supercomputing or high
performance computing

Advanced production
technology, systems, and
processes, high performance
computing, exponential, and
disruptive technologies, e.g.,
automation and robotics,
autonomous and
collaborative robots,
advanced mechatronics, and
micro and nano
manufacturing as further key
enablers of collaboration (H-
M and M-M)

D2.9: Advanced
interfaces, virtual,
augmented and mixed
reality, digital twin, and
others

Advanced interfaces, virtual,
augmented, and mixed
reality, and digital twin,
promoting and enhancing
collaboration in
manufacturing and
management

D2.10: Artificial
Intelligence approaches,
techniques, and
methods, and technology

[Applied] Artificial
Intelligence, machine
learning and deep learning,
pattern recognition,
blockchain, and other
technologies and
methodologies for enabling
and enhancing collaboration

D2.11: Business
intelligence, data
science, and big data
analytics

Business intelligence, big
data, and data analytics in the
data science domain as
important issues to enable
and promote collaboration




Collaboration

. Dimensions Characteristics
in 14.0

Advanced, integrated and
intelligent supply network
management, project, and
business management,
collaborative and integrated
manufacturing, management,
quality, maintenance,
performance measures:
sustainability, organizational
and machine robustness,
scalability systems, along
with other advanced EIS,
such as ERPs, MES, and
SCM

Advanced/ integrated
decision support systems
(DSS), and databases (DB),
knowledge engineering and
knowledge bases (KB),
automatic data acquisition,
and semantic web for
enhancing collaboration

D2.12: Advances SCM,
ERP, and MES, CIM,
and others

D2.13: Advanced DSS,
DB, KB, and Semantic
web, and others

Advanced simulation, and
other management systems
based on game theory, and
other advanced and
integrated optimization
approaches, e.g., for chaos
and complexity management,
based on distributed,
collaborative and real-time
management principles

D2.14: Advanced
Simulation, game theory,
technology, chaos and
complexity
management, and others

In collaboration, there are some main key words that are more or less

closely implied, such as interaction, interoperation, integration, distribution,



decentralization, networking, which may further imply an increased
complexity, arriving not just from the great amount and diversity of
data/information shared, but also by the unpredictable interrelations and
interchanges of this data/information, through a more or less widened
network of collaborating entities, for instance, machines in an extended
manufacturing environment context.

This complexity will, in the limit, conduct to the necessity of using
approaches and tools for supporting decision support, namely based on
chaos and complexity management, game theory, group decision-making,
organizational semiotics, and learning organization principles, along with
machine/deep learning, among other intelligent management and DM
paradigms and methods, including more autonomous or automatic ones, for
instance, based on MAS which is typically used in M-M collaboration.

Moreover, collaboration is also fostered or can be enhanced by the use of
other recent technologies, for instance for improving information and
knowledge sharing capabilities, namely through the use of a widened set of
Al-based approaches and platforms that enable ‘servitization’, emergence,
social communities, and networks, along with varying kind of internet
based paradigms, protocols and technologies, to be used among
collaborating organizations. These organizations may collaborate through
extended supply networks, for establishing interconnections between
business partners, in virtual, agile and distributed enterprises, supported by
entrepreneurship philosophies, along with advanced ICT, and exponential
technologies, e.g., High Performance Computers (HPC), along with other
technologies and principles underlying the 14.0, for instance, based on
parallel tasks programming.

Therefore, the 14.0 and underlying technology can enhance or promote

collaboration, by enabling full digitalization of everything, vertical and



horizontal integration or entities, and point-to-point or end-to-end access
and communication, along with agile IT technologies, platforms, and
services for improved interconnections and information, knowledge and
resources sharing and co-working or co-creation
(https://twitter.com/mikequindazzi/status/829993822008532992).

Thus, the so called smart or intelligent industry will further be based on
different collaboration levels, varying from process, and technology to the
full organizational and inter personal levels, not just in terms of intra- but
also inter-organizations and among stakeholders worldwide. These will be
spread through a widened range of globally distributed points, of not just
physical but also virtually distributed and complex networks of entities,
including not only factories but varying, heterogeneous, and extended sets
of inter-players, including machines, and tools. Further these complex
networks will include suppliers, and customers, through extended supply
networks, as is also reinforced by the determination of the so-called “Smart
Industry 4.0 readiness index”, through which it is considered that “Inter-
and Intra-Company Collaboration” is a fundamental condition in the scope
of Organizations’ structure and management (Pfaff and Hasan, 2011).

Moreover, also in Ustundag and Cevikcan (2017), the authors mention
that the current digital era differs from the others by not just providing
changes in main business processes but also by revealing concepts of smart
and connected products, along with service-driven business models that
enable to increase collaboration in the production network through
consistent data availability, along with the use of exponential technologies
for offering multiple benefits, being the enhanced productivity just a
starting point.

In Srivastava (2008), the collective intelligence concept and its

importance for the so-called new corporate governance is further explored.


https://twitter.com/mikequindazzi/status/829993822008532992

According to the authors, relevant new concepts, technological aids and
events are a part or contribute in framing their proposed new corporate
governance model based on Collective Intelligence and Knowledge
Management. For instance, based on amplified intelligence technology,
acquired information, information society, collective reflection, collective
DM, and extended organization.

Collaboration M&M processes and practices, along with supporting
collaborative networks and platforms, decision systems, web applications
and services, namely, for supporting engineering and production
management, are of utmost importance, and continue growing nowadays, in
the context of the 14.0 (Putnik and Putnik, 2019; Putnik et al., 2021 a,b,c;
Ferreira et al., 2022; Manupati et al., 2022; Varela et al., 2022).

The production systems that currently still prevail in the vast majority of
industrial companies, internationally and worldwide, are traditional
production systems, with little or no degree of either automation or some
form of ‘intelligence’ or ‘smart’ characteristic, thus being far away from the
envisioned 14.0 scope.

Moreover, this reality is even more problematic due to the absence of a
truly collaborative oriented culture in companies (Putnik and Putnik, 2019;
Putnik et al., 2021 a,b,c; Ferreira et al., 2022; Manupati et al., 2022; Varela
et al., 2022), in which the technological issues and concerns are
overwhelming and not effectively supported by a real mind shift regarding
the consciousness about the fundamental importance of the integration of
collaboration processes and practices, along side with business and
organizational change in 14.0.

Therefore, production systems will have to undergo profound changes, in
a medium term perspective, in order to guarantee collaboration, as it is a

major issue to enable reaching real sustainability in the light of current



global market and production requirements and of the ongoing and eminent
development, and absolutely necessary for its evolution and prosperity in
4.0 and further. Thus, in the context of the current 14.0 industrial
revolution, companies are already starting to be forced to restructure their
production systems and the corresponding administration, production and
management paradigms, in order to evolve, in a fast way, towards the
concept of CP[P] based on the evolution of current production systems (by
refurbishing, etc.) and/or based on the creation of new production units, and
open or flexible systems, completely oriented to the C[P]PS paradigms in
the 14.0 concept and the underlying promoting approaches and technologies
(Nikolakis et al., 2019; Ferreira et al., 2022; Manupati et al., 2022).

In this sense, a fundamental contribution to this end consists on the use of
collaborative M&M processes and practices, aligned not just with current
main 14.0 dimensions but also with some additional and more specific ones
that are required from the Collaborative Manufacturing and Management
scope, which constitutes a fundamental priority in order to further enable
the majority of existing companies to face this current need of change and
upgrade, not just technologically but through the essential support that
arises from groups of specialized professionals that jointly gather
fundamental and new knowledge in the two underlying main
interchangeable scientific domains and practices (I4.0 and Collaborative

Engineering).

5. Discussion on Collaborative Manufacturing and
Management in the Industry 4.0

According to the main literature contributions analyzed, it is noticeable that
in the 14.0 some main issues or dimensions underlying ColIM&M arise
from the Al domain, along with other technologies, which include [I]IoT,

digitalization, servitization, flexibilization, dynamism, complexity,



distribution, parallelism, and automation, along with agility, networking and
virtualization.

[4.0 1s dominated by a wide range of technologies and methodologies,
which requires a human aspect for its full or proper operation, in addition to
the industrial production engineering aspect, which underpins the scientific
knowledge of the methods, techniques, tools and methodologies of
development and management of CPS and underlying production processes.
The aspects of engineering, industrial management, economics, and human
engineering deal with a wide range of skills in order to allow success in
business and in its management, with a view to innovation, sustainability,
and entrepreneurship. It is thus expected that joint 14.0 and collaboration
oriented approaches and practices will permit to conceive and develop
suitable and innovative models, methodologies, approaches and systems,
which include the product design phase, the production process, the
distribution of the final product across global markets, and also taking into
account reengineering, reverse engineering, along with other related
engineering and manufacturing processes, along widened extended business

and supply networks.

6. Conclusion

In this chapter a general view over different approaches and application
scenarios of the most relevant collaboration and related terms were
explored, along with an overview of the main topics that have been put
forward worldwide about collaboration within a set of 19 main Industry 4.0
(I4.0) dimensions identified. The main collaboration and 14.0 topics were
jointly studied based on a systematic literature review (SLR). Through the
literature analysis it was possible to recognize that CollM&M is correlated
with approaches and technology underlying the [4.0, which can further

promote and support it.



It was possible to realize that the widened port folio of contributions in
the literature about CollIM&M-14.0 can be grouped into seven main clusters,
about: (1) learning approaches, including machine/deep learning models
and systems, among other approaches and supporting technology, namely,
for supporting human-centered CollM&M decision- making processes; (2)
Design and performance evaluation of life-cycle assessment strategies,
environments, through diverse kind of business models, and ecosystem
services for reaching sustainable development of companies; (3) Different
types of decision and communication support technology, including
platforms, frameworks, and simulation models and tools; (4) Advanced
architectures, methodologies, and models based on diverse kinds of recent
approaches, namely, based on cloud, game theory, and chaos and
complexity management approaches and systems; (5) Al-based approaches,
based on different procedures for enabling and supporting CPPS, including
multi-agents, pattern recognition, along with high-performance computing
and computer vision technology, among others; (6) Data science- centered
contributions, and further based on 10T, besides the integration of hard and
software tools for enabling flexible and interactive decision support, for
instance, through digital twins, and big data analytics; and (7) Other
ColIM&M approaches, based on a widened range of algorithms, methods
and tools, namely, for supporting group decision- making, and patterns and
performance analysis.

Future research should thus focus on the development of new approaches
and technologies to enable human-machine collaboration, along with the
exploration of further machine-machine collaboration, in order to evaluate
its implementation in diverse organizations and industrial sectors, namely

for supporting manufacturing and management practices.
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4
Collaborative Manufacturing Management
Meta-model

Nowadays, global resources management intersects with collaboration and
Industry 4.0 paradigms, namely, for collaboratively managing cyber-
physical systems. Only organizations that cooperate with their business
partners, along with their suppliers and remaining stakeholders, including
their clients, will be able to permit and promote the much-needed endowing
of agility, effectiveness, and efficiency in their management processes. For
that, suitable decision-making paradigms, along with underlying
approaches, will be needed, in order to properly fulfil current companies’
decision requirements and practices. The main purpose of this chapter is to
show that this can be achieved by applying combined global resources
management paradigms and approaches, to reach collaboration further
supported by recent technology made available through Industry 4.0. In
doing so, the interaction of companies and stakeholders, supported by
appropriate networks, along with varying kinds of other communication and
problem-solving technology, will enable them to promote and reinforce
interoperation to reach the best-suited management decisions, by
considering each one’s objectives and priorities, along with common goals.
To this end, in this chapter, a systematic literature review methodology is
mentioned to synthetize the main contributions about the relation of these
domains. The study carried out and the results obtained permitted us to
realize that dynamic, integrated, distributed, parallel, intelligent, predictive,
and real-time-based decision paradigms are of utmost importance currently,
but are still just scarcely being combined, which is suggested though its

encompassing through a proposed collaborative management framework



that is recommended to be applied, either in industry or academia, to

improve global resources management processes and practices.

1. Introduction

Collaborative Management (CollManag) requires the application of
management processes and approaches of a more or less widened set of
companies and stakeholders that interact for solving some shared problem,
usually intending to reach some common goal, besides their own objectives
and priorities.

Collaborative networks (CN), and global or group decision-making
approaches (GDMA) are fundamental for enabling and promoting the
interaction and sharing of knowledge among two or more collaborating
entities (Putnik et al.,, 2021 a,b; Varela et al., 2022 a,b,c). Moreover,
independently of sharing or not having the same goal, and/or resources,
usually, interplaying entities do fall into some kind of business
environment, for instance, in the context of distributed or extended
manufacturing systems (EMS) or agile/virtual enterprises (A/VE) (Lou et
al., 2010; Vieira et al., 2012; Putnik and Cruz-Cunha, 2005).

In the current complex and turbulent manufacturing environments
(Eijnatten and Putnik, 2004), such as EMS or A/VE, it is fundamental to
make use of CN and GDMA, in order to fulfil the requisites imposed by
Industry 4.0 (I14.0) (Putnik and Ferreira, 2019), and to solve the shared
management problems, for instance, related to manufacturing planning and
scheduling, occurring either in more traditional or in EMS or A/VE
manufacturing environments or in cyber-physical production systems
(CP[P]S) (Low et al., 2013; Guo et al., 2015; Canadas et al., 2018; Alves et
al., 2021), thus, usually requiring some combination of management
paradigms and approaches (P&A) for solving complex and distributed
manufacturing scheduling (DMS) problems.



A DMS problem (Vieira et al., 2012; Alves, Putnik, and Varela, 2021) is
one typical example of the need for using CN and GDMA for solving the
scheduling problem among a set of participating companies, which may or
may not further share manufacturing resources and be geographically
dispersed, tending to be quite complex combinatorial optimization problems
(Varela et al., 2022 c; Varela and Ribeiro, 2014).

The use of GDMA is fundamental to enable the resolution of DMS
problems, among others, occurring in the scope of CollManag, based on
proper approaches, methods, and techniques, along with the use of
appropriate communication networks among the set of interacting entities
or companies.

Besides distributed scheduling, other important issues do occur in the
scope of CollManag, namely, related to dynamically changing production
conditions and customers’ order requisites, in real-time, along with the need
for integrating varying kind of other management issues, besides scheduling
ones, related, for instance, to maintenance management, among others, that
also influence the whole global management process and increase its
complexity (Putnik and Cruz-Cunha; 2006; Putnik et al., 2021).

Thus, it becomes imperative to make use of appropriate decision support
(DS) approaches and tools, which enable dynamic and agile DS, namely,
through the use of multi-criteria decision-making (MCDM) methods and
models (Varela and Ribeiro, 2014), along with intelligent and/or predictive
DS algorithms and systems (Azevedo et al., 2021; Azevedo et al., 2022),
besides other approaches and technologies, for instance, to permit parallel
programming (Lopes et al., 2022). This last one can further benefit from
different kinds of Industry 4.0 (I14.0) technology, namely from the use of
high-performance computing (HPC) (Lopes et al., 2022).



Thus, this chapter intends to contribute to the synthesis of the main
research and findings about CollManag-P&A, during the last decade, by
highlighting the importance of supporting 14.0 technology, and to enable
answering the following research question: “What are the main decision
support paradigms and approaches underlying collaborative management in
the current digitalization era to promote a sustainable development of
companies?”

Moreover, both CollManag-P&A and 14.0 together, can be seen as
collaborative decision-making processes and practices that are currently
fundamental to enable and promote decision-making in and between
companies and their stakeholders, namely, in the context of CPPS, and to
permit to reach the endowing of agility, effectiveness, and efficiency of
their management processes.

The synthesis and detailed analysis performed in this chapter based on
the application of a systematic literature review (SLR) enabled us to
identify a varying set of CollManag-P&A that enable supporting companies
to properly address their daily management decision-making processes.

Moreover, it was possible to identify a set of main CollManag paradigms
that were encompassed in a proposed collaborative management meta-
model, in the 14.0 context. The proposed meta-model is, thus, intended to
enable solving more or less complex CollManag problems, namely in EME
or A/VE, or in the context of cyber-physical production systems (CPPS)
(Putnik and Ferreira, 2019; Putnik et al., 2021), which play a very important
role nowadays in the [4.0 era. This proposed meta-model integrates
dynamic, distributed, integrated, intelligent, predictive, parallel, and real-
time-based approaches, for fulfiling the requirements underlying the
resolution of the CollManag problems that may occur nowadays in different

kinds of manufacturing environments.



These manufacturing environments may vary from more classical or
centralized manufacturing environments up to fully distributed and
decentralized ones. Moreover, the proposed CM framework is a novel
contribution, and as to our knowledge, there is not yet any such kind of
contribution available in the literature. Thus, some more specific ones are
made, regarding the resolution of some kinds of problems occurring in a
more or less concrete manufacturing environment or application scenario
are usually being explored, and/or based on a reduced combination of
management paradigms and underlying approaches. Instead, by considering
our proposed CollManag meta-model, different kinds of management P&A
can be combined, along with varying types of underlying
methods/algorithms, and corresponding problem-solving tools or platforms,
for solving a CollManag problem. Therefore, different combinations of
appropriate  methods and techniques, varying from applying pure
mathematical optimization methods to the use of diverse types of
metaheuristics, among other artificial intelligence (AI) approaches, e.g.,
machine learning or multi-agent systems (MAS), just to mention a few, may
be applied for solving the CollManag problems, among others (Varela et al.,
2022 c; Vierra et al., 2012; Azevedo et al., 2021; Azevedo et al., 2022;
Alves et al., 2019).

Summarizing, this chapter aims at briefly presenting and discussing
collaborative manufacturing management approaches in the current 14.0
context, based on results obtained through an SLR. The reviewed
approaches are related to dynamic, distributed, parallel, predictive, and real-
time based paradigms, and the evolution of its application in manufacturing
management decision-making over the last decade (2011-2021). The results
obtained demonstrated the increasing importance that these management

approaches are assuming today, either used independently or combined in



the current digitalization era. The study also revealed the supporting
technologies that are also increasingly being used, associated with those
management approaches.

[4.0 represents the current trend of automation technologies in the
manufacturing industry, and it mainly includes enabling technologies such
as the CPS, Internet of Things (IoT), cloud computing, Al, blockchain,
industrial information integration, and other related technologies (L1, 2018).

According to a common definition of manufacturing management,
regarding one of its main functions related to manufacturing scheduling,
consists on the allocation, over the time, of jobs to machines, within a short
temporal horizon, and according to a specific criterion, such as cost or
tardiness (Framinan and Ruiz, 2010). Manufacturing scheduling systems is
a research subject extensively explored in the literature, either documented
in many quantitative and qualitative studies (Framinan and Ruiz, 2010) or
covered by deep review and research frameworks (Gahm et al., 2016). The
MS research offered in literature cover different approaches, ranging from
framework concepts as sustainability (Akbar and Irohara, 2018) or energy-
efficiency (Gahm et al., 2016), to supporting technologies such as cloud
(Liu et al., 2019), machine learning (Dogan and Birant, 2021), etc., just to
mention some.

Manufacturing management, and scheduling assume a fundamental
relevance in 14.0, as today manufacturing scheduling is performed within a
smart manufacturing environment, with a special focus on paradigms and
approaches related to dynamic, distributed, parallel, predictive, and real-
time based methods and tools. However, literature does not provide a
comprehensive and integrated view of these manufacturing management
paradigms in the actual context of 14.0. The authors conducted an SLR in

order to cover this gap, and to help understand the importance that the



different kinds of the identified manufacturing management paradigms
assume, namely, in the scope of manufacturing scheduling decision-making
in the current digitalization era.

Literature produced during the 10-year period between 2011 and 2021
about the current [14.0 dynamic, distributed or decentralized, parallel,
predictive or intelligent and real-time based models, methods, and tools was
reviewed. By doing so, this work has a twofold contribution: on one hand, it
offered a comprehensive overview on the increasing importance that these
scheduling approaches are assuming today, either used independently or
combined, while on the other hand, it simultaneously revealed the
supporting technologies that are also increasingly being used, associated
with those manufacturing management, for instance, scheduling
approaches.

The remainder of the chapter is structured as follows: in the next section,
a brief description of a proposed collaborative management meta-model is
provided, along with the underlying paradigms, focusing on dynamic,
distributed, parallel, integrated, intelligent/predictive, and real-time based
management. In the Section 3, main collaborative management paradigms
and approaches, and their application in the current digital era are briefly
described. Further, in Section 4, the contextualization of the proposed
collaborative management meta-model within the state of the art, and future
research and application directions are discussed. Finally, in Section 5, the
main conclusions reached are presented, along with some further research

questions.

2. Collaborative Manufacturing Management Meta-model and
Definition

Adaptable and Intelligent manufacturing systems (IMS) are increasingly

required nowadays to meet the increasing requirements of customers and



factories aiming at high quality levels and responsiveness. In the current
14.0 context, enabled by the (CPPS) and rooted on IMS (Monostori, 2014),
MS is a decision-making process that has been significantly improved and
automated (Varela et al., 2021). Although, the human continues to assume a
central role or importance in appropriately conducting manufacturing
management decision-making, under different kinds of management
paradigms (Varela et al., 2022; Bolton, 2008). The new manufacturing
structures will induce changes in the way production planning,
programming, and control is carried out, and a smart approach to solve
production scheduling problems has been proposed (Monostori, 2014).

In this section, a meta-model about CollManag will be presented, which
hereafter will be named as collaborative management (CM), in the 14.0
context, and which resulted from the SLR carried out, in addition to the co-
authors’ own knowledge in the focused scientific domain, as can be seen,
for instance, in (Leitao 2008; Hsu and Yang, 2016; Zhang et al., 2019;
Rohaninejad et al., 2021; Nof and Grant, 1991; Ghaleb et al., 2020).

The proposed CM framework is considered to be of utmost importance
currently in the 14.0 era, as it includes a set of the following six main
identified management paradigms from the literature: integrated, dynamic,
intelligent/predictive, distributed, parallel, and real-time management
(Figure 1).
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Figure 1. Collaborative management meta-model (adapted from Varela et al., 2023).<0
Next, the main CollManag paradigms in 14.0 will be briefly described.

Dynamic Management

As stated in (Villalonga et al., 2021), in the currently digitalization era,
dynamic production management is crucial, for enabling to reach
appropriate decisions, which is a big challenge, namely, in the context of
CP[P]S, for which the use of automated decision-making approaches, along
with digital twin, and fuzzy inference systems, can be highly beneficial,
being executed on the due course of the production. The authors propose a



framework for decentralized and integrated decision-making for re-
scheduling of a CPPS, which they mention was successfully validated in an
14.0 pilot line of assembly process.

In Ebufegha (2021) is also presented a model for dynamic scheduling in
smart manufacturing systems (SMS) and simulating its operation. SMS are
characterized as highly modular and flexible systems, with every physical
resource being able to exchange information with each other over an
industrial network and self-organize to schedule operations in real-time.
According to the authors, this can potentially reduce orders’ completion
times and increase the average machine utilization. Additional work related
to dynamic scheduling is presented in (Saboor et al., 2019; Hofer et al.,
2020; Tan et al., 2019; Ferreirinha et al., 2019).

Collaborative management paradigm based on dynamism at different
levels: data/information, methods, procedures, tools, and platforms to

support different management decision-making processes, namely in:

e Collaborative Dynamic Decision Making: A Case Study from B2B
Supplier Selection (Campanella et al., 2012; LNBIP, Springer).

e Dynamic MCDM with Future Knowledge for Supplier Selection
(Jassbi et al., 2014; JDS, Taylor & Francis).

e Distributed Manufacturing Scheduling based on a Dynamic Multi-
criteria Decision Model (Varela and Ribeiro, 2014; SFSC, Springer).

e Collaborative Negotiation Platform using a Dynamic Multi-
criteria Decision Model (Arrais-Castro et al., 2015a; IJTSST, IGI
Global).

e Spatial-temporal Business Partnership Selection in Uncertain
Environments (Arrais-Castro et al.,, 2015b; FME Transactions,
Belgrade Univ.).



Collaborative Framework for Virtual Organisation Synthesis
based on a Dynamic Multi-criteria Decision Model (Arrais-Castro
et al., 2018; LJCIM, Taylor & Francis).

A Collaborative  Multiplicative  Holt-Winters Forecasting
Approach with Dynamic Fuzzy-Level Component (Kays et al.,
2018; Appl. Sci., MDPI).

Normalization Techniques for Collaborative Networks (Vafaei et
al., 2019, Kybernetes; Emerald Group Pub. Ltd.).

Decision Support Tool for Dynamic Scheduling, and an Industry
4.0 Oriented Tool for Supporting Dynamic Selection of
Dispatching Rules based on Kano Model Satisfaction Scheduling
(Ferreirinha et al., 2019 a,b; FME Transactions, Belgrade Univ.).

How Environment Dynamics Affects Production Scheduling:
Requirements for Development of CPPS Models (Alves et al., 2021;
FME Transactions, Belgrade Univ.).

Integrated management

Collaborative management paradigm based on integration at different

levels: data/information, methods, procedures, tools, decision support

systems, and platforms, including the integration of diverse management

functions, namely, in:

e Web-based Technologies Integration for Distributed

Manufacturing Scheduling in a Virtual Enterprise (Varela et al.
2012; IJWP, IGI Global)

e Technologies Integration for Distributed Manufacturing
Scheduling in a Virtual Enterprise (Vieira, Varela, and Putnik, 2012;
CCIS, Springer)



A Web-Based DSS for Supply Chain Operations Management
towards an Integrated Framework (Carvalho et al., 2014; LNBIP,
Springer)

e An Integer Programming Approach for Balancing and Scheduling
in Extended Manufacturing Environment (Kays et al., 2015;
IEEEXplore)

e Scheduling and Batching in Multi-site Flexible Flow Shop
Environments (Santos et al., 2015; IEEEXplore)

e Integrated Platform for Real-time Control and Production and
Productivity Monitoring and Analysis (Vieira et al.,, 2016;
RRPMOM, Elsevier).

e Collaborative Manufacturing based on Cloud, and on Other 14.0
Oriented Principles and Technologies: A  Systematic
LiteratureReview and Reflections (Varela et al., 2018 b; MPER,
Polish Acad Sciences).

e Hybrid System for Simultaneous Job Shop Scheduling and Layout
Optimization based on Multi-agents and Genetic Algorithm (Alves
et al., 2018; AISC, Springer).

e Integrated Process Planning and Scheduling in Networked
Manufacturing Systems for Industry 4.0: A Review and
Framework Proposal (Varela et al.,, 2021; Wireless Networks,
Springer).

e Group Decision-making Approach for Ranking and Selecting

Maintenance Tasks for being Jointly Scheduled with Production

Orders (Varela et al., accepted; IJOR, Univ. Montenegro).

Distributed management
Manufacturing management, namely scheduling, in distributed

manufacturing environments is a particularly complex combinatorial



problem, and even further when considering dynamic environments (Leitao
2008). A holonic approach for distributed scheduling in a dynamic
manufacturing environment is presented in (Leitdo 2008), where the
scheduling functions are distributed by several entities. The authors propose
a scheduling and control approach that aims at achieving fast and dynamic
re-scheduling by using a scheduling mechanism that evolves dynamically to
combine centralized and distributed strategies, improving its responsiveness
to emergence, instead of the complex and optimized scheduling algorithms
found in traditional approaches. Other interesting contributions are being
put forward, with a special focus on the current 14.0 requirements and
increasingly complex manufacturing conditions (Liu et al., 2019; Varela et
al., 2021; Hsu and Yang, 2016; Zhang et al., 2019; Jiang et al., 2021;
D'Aniello et al., 2021; Sousa and Oliveira, 2020; Lohmer and Lasch, 2021).

Collaborative management paradigm that is based on distributed
management models, processes, approaches, tools, systems, and platforms,
namely for supporting distributed scheduling, among other management

functions, namely, in:

A Web Interface for Accessing Scheduling Methods in a

Distributed KB (Varela et al., 2004; IFIP AICT, Kluwer Acad. Publ.).

e Definition of a Collaborative Working Model to the Logistics Area
using Design for Six Sigma (Carvalho et al., 2016; IJORM, Emerald
Group Pub. Ltd.).

e Investigation of Reconfiguration Effect on Makespan with Social
Network Method for Flexible Job Shop Scheduling Problem
(Reddy et al., 2017, CAIE, Elsevier).

e A Cloud-based Architecture with Embedded Pragmatics Renderer

for Ubiquitous and Cloud Manufacturing (Ferreira et al., 2017,

LJCIM, Taylor & Francis)



e Telefacturing Approach for Optimal Manufacturing Service to
Enhance the Interoperability in Distributed Manufacturing
Environments (Manupati et al., 2017; Journal of Eng., Hindawi).

e Web-Based Decision System for Distributed Process Planning in a
Networked Manufacturing Environment (Manupati et al., 2018;
SCI, Springer).

* A Novel Integrated Framework Approach for TEBC Technologies
in Distributed Manufacturing Systems: A Systematic Review and
Opportunities (Ramakurthi et al., 2021a; LNME, Springer).

e A Hybrid Multi-objective Evolutionary Algorithm-based Semantic
Foundation for Sustainable Distributed Manufacturing Systems
(Ramakurthi et al., 2021b; Appl. Sci., MDPI).

e An Innovative Approach for Resource Sharing and Scheduling in
a Sustainable Distributed Manufacturing System (Ramakurth, et
al., 2022; AEI, Elsevier).

e Leveraging Blockchain to Support Collaborative Distributed
Manufacturing Scheduling (Ramakurthi et al., 2023; Sust., MDPI).

Intelligent and predictive management

Manufacturing managers are generally looking for models and methods that
besides being able to provide efficient overall production performance
further enable reactive systems to deal with unpredicted events Cardin et
al., 2017; Morariu et al., 2020; Nof and Grant, 1991). According to the
authors in Cardin et al. (2017), one important contribution to this end arises
from the holonic/MAS domain, which permits us to couple predictive or
proactive with reactive mechanisms through agents/holons. There are
various other approaches that are being put forward for carrying out
predictive or intelligent scheduling, for instance, based on different types of

Al-based approaches, namely, machine/deep learning, and neural networks,



among others, e.g., from the data science field, for big data processing and
analysis (Morariu et al., 2020; Kalinowski et al., 2013; Jimenez et al., 2016;
Sobaszek et al., 2017).

Collaborative management paradigms through the use of Al-based
procedures, methods, algorithms, techniques, tools, and platforms, to ensure
data forecasting or prediction, and support intelligent manufacturing
management, along with security in data/information transferring, sharing

and processing between entities, can be found in:

e Smart Objects Embedded Production and Quality Management
Functions (Putnik et al., 2015; IJOR, Univ. Montenegro).

e Simulation Study of Large Production Network Robustness in
Uncertain Environment (Putnik et al., 2015; Cirp Annals—Manuf.
Tech., Elsevier).

e A Cyber-physical System based Collaborative Distributed
Manufacturing System Architecture for Intelligent Manufacturing
(Thakur et al., 2017; Regional Helix 17).

e A Human Centred Hybrid MAS and Meta-Heuristics Based
System for Simultaneously Supporting Scheduling and Plant
Layout Adjustment (Alves et al., 2019; FME Transactions, Belgrade
Univ.).

e Production Scheduling using Multi-objective Optimization and
Cluster Approaches (Azevedo et al., 2021; LNNS, Springer).

e Bio-inspired Multi-objective Algorithms Applied on Production
Scheduling Problems (Azevedo et al., 2022; IJIEC, Growing
Science).

e Semi-double-loop Machine Learning based CPS Approach for

Predictive Maintenance in Manufacturing System based on



Machine Status Indications (Putnik et al., 2021; Cirp Annals—Manuf.
lech., Elsevier).

e A Self-Parametrization Framework for Meta-Heuristics (Santos et
al., 2022; Mathematics, MDPI).

e Literature Review on Autonomous Production Control Methods
(Martins et al., 2020; EIS, Taylor & Francis).

e Comparative Study of Autonomous Production Control Methods
using Simulation (Martins et al., 2020; SMPT, Elsevier).

Real-time management
Real-time-based management is of utmost importance in the I4.0,
characterized by the existence of smart interconnected and communicating
devices or entities (Varela et al., 2021, 2022). Thus, this paradigm is being
widely used currently, and further combined with other manufacturing
management paradigms and approaches (Hofer et al., 2020; Hsu and Yang,
2016; Kalinowski et al., 2013; Rahman et al., 2019). As stated in Rahman et
al. (2019), with the emergence of new [4.0 technologies, real-time order
acceptance and scheduling is a key problem in a make-to-order (MTO)
production systems, where customers place orders in a dynamic basis, and
the decision maker has promptly decide about their acceptance or rejection
based on the available resources on due time. This can be achieved by
combining different kinds of technology and decision-making support
methods, techniques, and tools (Modekurthy et al., 2021; Chen et al., 2020;
Kocsi et al.,, 2020; Ghaleb et al., 2020). One typical approach, among
others, is based on the use of the rolling horizon technique (Hsu and Yang,
2016; Alves et al., 2021).

Collaborative management paradigm, approaches, and technology to

allow real time data/information acquisition, processing, analysis, and



visualization based on appropriate methods, procedures, tools, and

platforms for supporting manufacturing management, in:

e Integrated Platform for Real-time Control and Production and
Productivity Monitoring and Analysis (Vieira et al.,, 2016;
RRPMOM, Elsevier).

e Telefacturing based Distributed Manufacturing Environment for
Optimal Manufacturing Service by Enhancing the Interoperability
in the Hubs (Manupati et al., 2017; Journal of Eng., Hindawi).

e Intelligent Platform for Supervision and Production Activity
Control in Real Time (Vieira et al., 2018; Adv. Manuf., Springer).

e Supplier Evaluation and Selection: A Fuzzy Novel Multi-Criteria
Group Decision-Making Approach (Simonov et al., 2018; IJOR,
Univ. Montenegro).

e Collaborative Manufacturing based on Cloud, and on Other 14.0
Oriented Principles and Technologies: A Systematic Literature
Review and Reflections (Varela et al., 2018 b; MPER, Polish Acad
Sci.).

e How Environment Dynamics Affects Production Scheduling:
Requirements for Development of CPPS Models (Alves, Putnik, and
Varela, 2021; FME Transactions, Belgrade Univ.).

e Modelling and Evaluation of “Fixed Horizon”, “Rolling Horizon”
and “Real Time Management” Production Scheduling Paradigms
in Ubiquitous Production Networks under Conditions of Dynamic
Environments for Economic and Environmental Sustainability
(Alves, C., Ph.D. concluded in 2017, internal member).

Parallel management



Parallel management is not really a new paradigm (Taillard, 1994; Daniels
et al., 1996; Olafsson and Shi, 2000), but another one that is gaining a
refreshed attention in the current digitalization era, as it presents the
potential to solve the increasingly more complex MS problems, demanding
bigger computational power. In this context, it has already restarted to gain
an important visibility, to continue being further explored, as parallel
architectures enable high-level performance, namely, through cloud and
edge computing, along with varying types of other management
approaches, for instance, based on metaheuristics, along with other
techniques for supporting manufacturing scheduling (Coelho and Silva,
2021; Rohaninejad et al., 2021).

Collaborative management paradigm based on the parallelization of
models, methods, and procedures, by using appropriate algorithms, systems
and platforms to permit parallel algorithms execution, and manufacturing
management, in:

The Impact of Technological Implementation Decisions on Job-Shop
Scheduling Simulator Performance using Secondary Storage and
Parallel Processing (Lopes et al., 2022;).

Other ongoing work with a research team from the Department of
Computer Science of the Polytechnic Institute of Cavado and Ave,

Barcelos.

Collaborative Manufacturing Management Definition

Collaborative Manufacturing Management (CMM) can be defined as a
management function that consists of planning, directing, and controlling
all production factors and resources, processes, and other elements inherent
in production systems and supply chains or networks, aiming at the
inclusion and satisfaction of demand, in the context of a traditional or

extended, distributed, virtual or networked manufacturing environments,



aiming to satisfy other different conditions, to satisfy internal and external
requirements and customers, based on defined business strategies,
integrating all stakeholders involved, including suppliers, business partners,
internal and external businesses, and clients, in order to achieve business

objectives, along with sustainability and collaboration goals.

3. Collaborative Management Paradigms Applications

In this study, approximately 149 publications have been analysed, which
corresponded to the set of the most relevant ones, found in the literature,
satisfying a rigorous set of conditions imposed in the conducted literature
search process, regarding the definition of exclusion and inclusion criteria
for conducting an SLR process. Thus, this main publication set was subject
to deep analysis and further discussion.

The set of the most relevant publications was reached by using the b-on
platform at UMinho (https://www.b-on.pt/entidade/universidade-do-
minho/). This kind of platform was chosen as it permits access to the full
content of a widened collection of scientific works published in high-
quality sources, for instance in journals, and in the proceeding books of
international conferences, indexed in relevant scientific databases, such as
the Web of Science, Scopus, Science Direct, and IEEE.

The search process was carried out by using groups of keywords about
collaborative and global management in the Industry 4.0. As a result, Figure
2 shows the total amount of work obtained regarding the underlying
focused management paradigms between 2011 and 2021. As can be seen in
Figure 2, the CollManag paradigm that occurred the most was the
integrated one, followed by the real-time one. Thereafter, the distributed
paradigm appears to be highly relevant, followed narrowly by the intelligent

or predictive paradigm, and next by the dynamic paradigm. A less
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expressive relevance does appear with the parallel paradigm, although it is a

revealing and increasing tendency, as shown in Figure 3.
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Figure 2. Number of publications about management paradigms application from 2011
to 2021 (adapted from: Varela et al., 2023).
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Figure 3. Evolution of the number of publications about management paradigms from
2011 to 2021 (adapted from: Varela et al., 2023). <

Collaborative Management Paradigms Evolution

The evolution of the use of collaborative management paradigms over the

last decade 1s expressed in Figure 3, regarding the progression of the



CollManag about dynamic, integrated, intelligent/predictive, distributed,
parallel, and real-time-based management.

It is, thus, also perceptible through Figure 3 that the integrated and the
real-time paradigms are among the ones most widely being applied, and
continue growing, as also happens, in general, with the remaining ones.
This growing trend in the paradigms reveals its positive impact in the
current digitalization era, namely, in the CollManag scope.

Moreover, the distributed and the predictive/intelligent paradigms are
also receiving increased attention lately, being particularly visible, and
followed by the dynamic and the parallel management ones. The last, the
parallel paradigm, is the one that has been less explored during the last
decade, although it is one of those that is currently experiencing a higher
application increase. Furthermore, other management strategies have also
been explored, namely, related with concurrent engineering applications
(Demoly et al., 2013; Deshpande, 2018).

Several contributions have already been put forward, for instance,
regarding the more technical aspects underlying the 14.0 context, that can
promote or enhance CollManag issues in and between collaborating
companies, and its inherent business and management models, namely
(Sahu et al., 2018 a,b,c; Bag et al., 2021; Kang et al., 2021), among others,
which will be further synthetized and analysed in the next sections.

According to the study carried out, it is understandable that the CM
paradigms are, to some extent, being combined. A frequent arrangement of
the real-time and the dynamic, as well as with the distributed and/or with
the intelligent or predictive management paradigms, is also noticeable.

Moreover, the simulation technique is also being considerably used
nowadays as a CM method, and is also being combined with other

technologies and approaches, namely with digital twins, and with the



dynamic management paradigm, as well as other Al-based approaches,
including different types of metaheuristics and MAS .

The cloud and MAS technology is also frequently being used along with
metaheuristics, and with distributed, parallel, and real-time management
paradigms.

Moreover, other Al-based methods, for instance, based on blockchain,
smart contracts, fuzzy logic, holons, and machines of deep learning
approaches, are also being frequently used, namely, in association with
distributed, parallel, predictive, and real-time management paradigms,
along with other approaches for enabling big data processing and analysis
from the data science domain, for instance, regarding the application of
intelligent and predictive management paradigms.

The rolling horizon is another frequently used approach, which is further
being analysed in the scope of real-time management. Additionally, there
are other kinds of methods that are being explored in the actual
digitalization age, for instance, to permit other kinds of cooperative
management approaches, namely, regarding manufacturing scheduling
through stakeholders to reach improved solutions. Some well-known
examples include the use of group decision-making models, as well as
game theory, chaos and complexity analysis, and other negotiation-based
management methodologies. Such kinds of approaches are frequently used
in dynamic, distributed, and agile or virtual systems, or in EME (Putnik et
al., 2021 a,b; Eijnatten and Putnik, 2004; Arrais-Castro et al., 2018;
Manupati et al., 2017; Reddy et al., 2017; Nouiri et al., 2019).

The deep analysis of the publications summarized in Table 2 further
enables us to recognize that around three out of the whole set of six
management paradigms are being combined. Therefore, an additional effort

will be needed to properly tackle collaborative management among



companies and remaining stakeholders, to reach improved decisionmaking
processes and practices by increasing the combination of global
management paradigms and underlying problem-solving approaches.

The six management paradigms underlying the proposed collaborative
management meta-model previously presented are further discussed, along
with other manufacturing management approaches and tools based on the
bibliography analysed, in order to provide further insights and directions
regarding collaborative manufacturing management research and practice in
companies in the digital age.

The dynamic management paradigm is mainly characterized by the
possibility of quickly adapting to changing manufacturing management
conditions by adapting the corresponding management approaches and
solving methods (Alves et al., 2021; Vafaei et al., 2019; Varela et al.,
2018 a,b; Tan et al., 2019; Ferreira et al., 2019; Saboor et al., 2019).

The distributed management paradigm is well-suited for permitting the
decomposition of management problems, which may arise in the scope of
extended, agile, and virtual production systems, usually characterized by
higher levels of complexity associated with its underlying networked
organization (Vieira et al., 2012; Ramakurthi et al., 2021; Saeidlou et al.,
2019; Zhang et al., 2019; Mishra et al., 2016; Sousa and Oliveira, 2020;
Ramakurthi et al., 2022).

The intelligent and predictive management paradigm is currently a main
issue in the 14.0 context, and underlying CPPS, supported by Al-based
approaches, plays an important role in promoting the resolution of
management problems through the use of various methods and techniques
that further enable us to predict data and manufacturing conditions, by

exploring high volumes of varying kind of dynamically emerging data (Guo



etal., 2015; Azevedo et al., 2021; Azevedo et al., 2022; Cardin et al., 2017;
Sobaszek et al., 2017).

The parallel management paradigm is particularly well suited for solving
‘heavy’ or complex management problems through a decentralized solving
methodology in which two or more entities collaborate in its resolution. The
use of HPC 1s nowadays recommended in the 14.0 context, mainly when in
the presence of big data and by further making use of compound
management methods, which is quite typical in the resolution of
manufacturing scheduling problems, particularly those occurring in
distributed and extended manufacturing environments and which may
further include CPS (Mao et al., 2020; Lopes et al., 2022).

The integrated management paradigm allows the integration of two or
more management functions, for instance, regarding process planning and
scheduling, batching and scheduling, scheduling and manufacturing layout
arranging, scheduling and maintenance management, and scheduling and
supply chain management, among other combinations, to mention just a
few of the most frequently used ones (Low et al., 2013; Fu et al., 2019;
Varela et al., 2021; Frazzon et al., 2018; Laili et al., 2020).

The real-time management paradigm is also one of the most popular ones
in the 14.0 context, as it enables businesses to acquire, process, and analyze
data in a dynamic and agile way from the manufacturing environment up to
the management level through the use of appropriate technological support,
based on suitable middleware, including smart objects and associated
devices (Alves et al., 2021; Wang et al., 2008).

The proposed collaborative management meta-model, integrating the six
main collaborative management paradigms identified, consists of original
input, as the co-authors did not come across any more or less closely related

work mentioning the combined use of this whole set of management



paradigms either in academia or industry, as previously shown through the
compiled information in Figures 2 and 3. Therefore, regarding the whole
and diversified set of benefits expected through its use, further
developments regarding the combination of the underlying six management
paradigms is highly recommended, as each one enables us to tackle specific
main issues in the context of CollManag, being considered to be of highest

relevance in the current Industry 4.0 era.

Final Remark

For a full implementation of collaborative management, the set of six main
management paradigms underlying the proposed collaborative
management meta-modelshould be jointly explored, in order to achieve
more effective and efficient collaboration. In this way, it will be possible
to satisfy not just the inferior level of collaboration, through the use of
means and technologies that permit connection, communication and sharing
of some tangible or intangible asset (lower level of collaboration), but
further processes and practices that allow co-learning and co-creation, in a

given industrial context (higher level of collaboration).

By enabling:
Dynamic:

e Data acquisition, and pre- core and post- processing
e Maintenance tasks ranking and selection

e Manufacturing planning, programming, and control
Integrated:

e Data pre-core, and post-processing, and analysis



e Management functions (e.g., about maintenance tasks and production

orders’ processing and scheduling)

Distributed:

e Group decision-making
e Maintenance task ranking and selection

e Manufacturing planning, programming, and control
Intelligent/predictive:

e Data processing (about manufacturing, management, namely about
maintenance management and production scheduling data, among
others)

e Problems solving algorithms (e.g., production and maintenance

planning and tasks scheduling, along with production control)

Parallel:

e Algorithms execution

e Decision-making
Real time:

e Data acquisition, processing, and analysis

e Management approaches

Thus, it is important to combine, as much as possible the different

paradigms (ideally all), to achieve a higher level of:

e (Collaborative engineering and management

e Sustainable development of companies



e Transition of companies to the 14.0, properly supported by underlying

recent technology

Based on:

Multidisciplinary teams focused on internal and externally oriented
businesses and management strategies and approaches through extended

communication networks, protocols, and means to connect all stakeholders:

e Suppliers
¢ Internal businesses
e External business partners

e Clients

4. Contextualization of the Proposed Collaborative
Management Meta-model within the State of the Art and
Further Directions

According to the results obtained through the SLR conducted, it is possible
to understand that the CollMang paradigms are usually combined with each
other; it is visible the combination of two or more paradigms, namely the
real-time with the dynamic, the distributed or the predictive ones.

According to the results obtained, it is possible to understand that the
management paradigms are usually combined with each other; it is visible
the combination of two or more paradigms, namely, the real-time with the
dynamic, the distributed, or the predictive ones.

Simulation is currently a frequently used management approach, namely,
as a scheduling one, along with digital twin, for instance, through the
application of dynamic scheduling, along with a widened range of other
approaches, such as from the Al domain, namely, based on diverse meta
heuristics and MAS.



Cloud, MAS, along with meta heuristics, and hybrid or combined
approaches are frequently appearing associated with the Distributed, the
Parallel, and the Real-time-based management paradigms.

Also, a widened and diversified range of other Al-based approaches,
namely, through smart contracts, fuzzy logic, holonic, and learning
(machine/deep learning) based approaches are increasingly being used
currently, for instance, associated to the Distributed, Parallel, Predictive,
and Real-time- based management paradigms, besides other data science
approaches for big data processing and analysis, namely, in Intelligent/
Predictive management scope.

The rolling-horizon is an approach that is frequently analysed in the
context of real-time management. Besides, varied other approaches exist, in
the current digitalization era, for enabling cooperative of collaborative
management, among a more or less extended set of stakeholders for
reaching joint orders schedule, for instance, based on group decisionmaking
approaches, game theory, chaos and complexity management or
negotiation, which typically occur in the context of dynamic, distributed,
decentralized, virtual, extended, and agile manufacturing environments
(Varela et al., 2021, 2022; Sousa and Oliveira, 2020; Delaram and Valilai,
2018; Fernandez-Viagas and Framinan, 2021; Hsu, Wang, and Chu, 2018;
Nouiri, Trentesaux, and Bekrar, 2019; Tighazoui, Sauvey, and Sauer, 2021;
Wenzelburger and Allgéwer, 2021; Yang and Takakuwa, 2017).

In this work the main focus consisted on studying the state of the art
research about CollManag, and its relation with the collaboration theory and
practice, in the current 14.0, along with the analysis of expected benefits
that can arise from the combined application of management paradigms,
along with different types of solving approaches, methods, and algorithms,

varying from more or less pure mathematical or optimization methods up to



diverse kinds of methods, such as those based on Al, for solving
management problems in different production environments. These
manufacturing environments can vary from more classical ones up to more
recent cyber-physical and/or extended, complex, and agile or virtual
manufacturing environments.

To this end, some relevant and more or less recent CollManag paradigms
and underlying approaches and systems from the literature were briefly
referred to, in order to better contextualize the work carried out in the scope
of the 14.0 context and associated collaborative processes and practices,
which aimed at a novel contribution, as no similar work was identified
through the literature analysis performed.

In the 14.0 context, one typical example of CollManag is DMS, which is
characterized by a set of tasks that have to be chained in order to obtain a
coordinated workflow among the dispersed manufacturing resources. This
chaining process results in a more or less complex production program
through the allocation and sequencing of the tasks on the corresponding
production resources, which has to satisfy a set of constraints related either
to the production resources itself and/or to the tasks, in order to reach some
simple or combined or complex goal.

Currently, due to globalization, DMS plays a crucial role, and diverse
approaches have been proposed to accomplish it; a very popular one is
based on a MAS, through the use of appropriate architectures and protocols
(Shen, 2012).

One such contribution concerning DMS is mentioned in (Varela and
Ribeiro, 2014), which is considered to be necessary in the current global
production environments. Another example is presented in Varela and
Ribeiro (2014) about an approach for dynamic DMS, supported by a
dynamic multi-criteria decision model (DMCDM), and by further



integrating strategies that enable trade-offs between diverse performance
measures. Moreover, there are many various approaches, algorithms, tools,
or systems and platforms to support CollManag or, such as, global
manufacturing scheduling, that can be further implemented. These vary
from purely centralized up to fully decentralized architectures, for instance,
for further integrating other management functions, besides manufacturing
scheduling, such as process planning, batching, system balancing, and
layout definitions, namely referred to in the following sources (Vieira et al.,
2012; Guo et al., 2015; Varela et al., 2012; Ramakurthi et al., 2021).

In Chiu and Yih (1995), a simulation model is proposed that implements
a dynamic scheduling scheme to generate training scheduling examples,
considered by the authors to be good schedules. Their search training was
performed by using a proposed genetic algorithm, along with a
tolerancebased learning algorithm requiring the acquisition of general
scheduling rules from the scheduling training examples, and further
adapting to new perceived examples, enabling knowledge modification.
According to the authors, their experimental results showed that the
dynamic scheme meaningfully outperformed a static one when integrating a
simple dispatching rule for performing the distributed scheduling.

In Zhou et al. (2008), an agent-based approach is proposed for distributed
manufacturing programming, which enables companies to solve a global
combinatorial optimization schedule, by integrating a jobs process plan in a
distributed production environment. Their approach was adapted from a
particle swarm optimization (PSO) algorithm, through which the agents
move towards a schedule to find the best global makespan.

Saeidlou et al. in 2019 proposed a cooperative system to perform
distributed manufacturing scheduling, based on a set of rules considered to

be most relevant, which are integrated through their proposed cooperative



system, through an agent-based decision support system that, according to
the authors, enables them to find near-optimal solutions within a reasonable
computational time.

Zhang et al. in 2019 put forward an optimization algorithm centered on a
discrete fruit fly optimization algorithm (DFOA), integrating an
evolutionary optimization model for cost minimization, namely, energy
consumption, for scheduling jobs in a distributed manufacturing system that
comprises multiple factories, each one integrating a flow shop with
blocking constraints. According to the authors, their proposed approach
outperforms some well-known precision and convergence algorithms.

Wang, Ghenniwa, and Shen in 2008 present a real-time distributed shop
floor scheduling approach, based on an agent-based service-oriented
architecture, through which the shop floor is modelled as a group of flexible
manufacturing systems in the form of multiple work cells. In this proposal,
the authors perform the distributed scheduling process through a local
dynamic scheduling approach, by the interaction of a scheduling agent, a
real-time control agent, and resource agents, based on web services, for a
proper integration.

Mishra et al. in 2016 describe a cloud-based multi-agent architecture for
distributed manufacturing units’ operational planning and scheduling. Their
proposed system is self-reactive, integrated, dynamic, and autonomous, in
order to assist the manufacturing industry in establishing real-time
information sharing among autonomous agents, clients, suppliers, and the
manufacturing units, which is illustrated through a case study.

In Fu, Wang, and Huang (2019), an integrated brainstorm optimization
algorithm is put forward by the authors for distributed production, through
the use of a stochastic multi-objective model. The distributed

manufacturing environment consists of a set of independent flow shops



with different quantities of machines. They conclude that their proposed
approach can achieve satisfactory performance when compared with two
other multi-objective algorithms from the literature, based on the
experimental results obtained.

Mao, Li, Guo, and Wu (2020) researched cooperative planning and
symmetric scheduling on parallel shipbuilding projects in the context of an
open distributed manufacturing environment. To this end, the authors
propose an assistant decision-making approach to support task dispatching
and multi party collaboration in order to achieve betterdistributed resource
utilization, further helping project managers in controlling the shipbuilding
practice, based on negotiation through an iterative combination auction
(ICA) method for solving integrated project planning and scheduling. The
authors present a demonstrative example to show the efficacy and
reasonableness of their proposed approach.

Lou et al. (2010) put forward a distributed programming method
supported by multi-agents for assigning tasks to machines, for being applied
through a dynamic formation of virtual job-shops to satisfy manufacturing
requisites, further based on market mechanisms, as well as a distributed
scheduling approach based on negotiation among participating entities.

Cheng, Bi, Tao, and Ji in 2020 propose what they call a hyper
networkbased manufacturing service for distributed scheduling and
cooperative production in smart systems, through the use of cloud services,
along with real-time data, as collaborative services. Their proposed
approach 1s further based on graph coloring and an artificial bee colony
algorithm for solving the scheduling problem. The authors state that three
sets of tests were performed and discussed in terms of three scenarios of
distributed cooperative manufacturing processes, through a private, public,
and hybrid cloud-based model.



In the concrete context of CPS, some further interesting contributions did
arise. In Kim et al. (2013), a parallel programming approach is applied for
analyzing a self-driving car case study.

In 2019, Nouiri, Trentesaux, and Bekrar put forward an integrated energy
efficient programming approach for production systems based on a
collaboration process between cyber-physical and energy systems.

Putnik and Ferreira in 2019 proposed an Industry 4.0 meta-model, which
enables businesses to integrate models and tools in cyber-physical
manufacturing systems.

Tan, et al. in 2019 presented an integrated approach to model, plan, and
schedule operations on a shop floor assembly system characterize d by
dynamic cyber-physical cooperation, which was analysed through a smart
industrial robot production case study.

Another interesting contribution is referred to in Villalonga et al. (2021)
about a decision-making model for supporting dynamic programming in

CPPS by using digital twin technology.

5. Conclusion

In this chapter, the main results about global resources management
paradigms were synthetized and analyzed, in the scope of the 14.0 era, and a
collaborative management meta-model was presented and briefly described,
including  six  paradigms concerning  integrated, dynamic,
intelligent/predictive, distributed, parallel, and real-time management.

The proposed manufacturing management meta-model is aimed at
supporting proper collaborative management processes and practices by
encompassing, as much as possible, the underlying paradigms according to
specific needs of each company and associated stakeholders, in order to
reach joint and enhanced decisions once around three are jointly explored.

Such aims or objectives will greatly depend on the underlying



manufacturing environment, which may vary from more simple, classical,
or more traditional, and centralized ones up to more complex, cyber-
physical, distributed, extended, and agile or virtual enterprises. These
varying kinds of manufacturing environments, for instance more complex
and dynamic ones, along with their underlying management strategies,
assume a primer importance nowadays, in the 14.0 era, namely in the
context of cyber-physical systems, as was highlighted in this chapter. It is,
thus, envisioned that the proposed full joint exploration of the set of six
management paradigms identified will be of the utmost importance, namely
in managing such complex and highly demanding manufacturing
environments as currently exist. This expectation is based on the capability
of a dynamic adaptation to changing manufacturing conditions, to the
decomposition or distribution and decentralization of the resolution of
complex management problems, and also on the focus on different
management functions through real-time-based big data acquisition,
processing, and analysis in highly demanding and uncertain manufacturing
environments. This is an original work, as opposed to current studies, as it
permits broader and deeper insights about currently considered fundamental
decision-making paradigms and underlying approaches, which are, thus,
suggested to be further explored and combined, to enable to businesses to
properly support manufacturing management, to carry it out in a
collaborative manner, and to further support and promote the current
Industry 4.0 technology. However, some limitations are expected to occur,
related to the joint exploration of different kinds of management paradigms,
due to the underlying highlydemanding knowledge and technology for
permitting a full exploration of its joint application, along with associated
problem-solving approaches. Thus, additional future work is suggested,

namely for finding out some promising technologies for enabling the proper



application of the proposed collaborative management framework in real
industrial and academic scenarios, through the combined use of its six
management paradigms, along with suitable approaches and tools for
permitting prosperous and true innovation and company development in the
current digitalization era.

Further, manufacturing management can be carried out through the
application of different kinds of paradigms and approaches. In this chapter,
the current 14.0 dynamic, distributed or decentralized, parallel, predictive or
intelligent, and real-time based ones were explored and discussed, based on
results obtained through a systematic literature review. The results
demonstrated not only their increasing importance nowadays, but further
that those paradigms and approaches are frequently combined. The dynamic
and the real-time based management paradigms are frequently combined
with some others, namely with the distributed or the predictive ones.

Concerning supporting technologies, the cloud, multi-agent systems,
along with meta-heuristics, and hybrid or combined approaches are also
increasingly being used, appearing most frequently associated with the
Distributed, the Parallel, and the Real-time based management paradigms.
A widened and diversified range of other Al-based approaches are
increasingly being used, for instance associated to the Distributed, Parallel,
Predictive, and Real-time-based management paradigms, besides other data
science approaches for big data processing and analysis, namely in
Predictive or Intelligent management. The rolling-horizon is an approach
that is frequently analysed in the context of real-time management.

Besides, other approaches do exist, and are assuming an increasing
importance within 14.0. For instance to enable cooperative or collaborative
management among a more or less extended set of companies, to jointly

prepare manufacturing plans and schedules, for instance based on group



decision-making or negotiation, which are of particular interest in

distributed, virtual, extended and agile manufacturing environments.
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5
Group Decision-making Approach for
Ranking and Selecting Maintenance Tasks
for Joint Scheduling with Production Orders

Group decision-making has captured the attention of researchers for
decades but due to its importance and complexity further explorations and
studies, namely, for its application in industrial engineering continue to be
needed in the current digital age. In this paper, a group decisionmaking
approach is put forward for evaluating and selecting maintenance tasks to
enable joint maintenance and production management, by using a
collaborative management system. The proposed approach includes a two-
stage assessment method, which enables a set of decision-makers to
collaborate in ranking and selecting a set of maintenance tasks for being
jointly scheduled with production orders. The group decision-making
approach uses a dynamic multi-criteria decision model that aggregates
information about historical, current, and provisional data about
maintenance tasks. The proposed collaborative approach is illustrated
through an application example and further contextualised within the state
of the art. This study permits to us to realise that collaborative management
approaches, namely, based on the group decision-making approach, enable
conducting a dynamic, integrated, distributed, intelligent, predictive, time
and condition based maintenance task management in real time, postulated
on the fusion of past, present, and future data, and that there is still a lack of
contributions regarding the use of collaborative approaches in industrial

management.

1. Introduction



Group decision-making (GDM) is a research topic that falls within
collaboration, and collaborative management domain (Varela et al., 2022;
Varela et al., 2022 a), and is of primer relevance in the digitalization era, by
promoting and enabling a sustainable development of companies (Varela et
al., 2022, 2023; Varela et al., 2022 a,b, 2023).

The development of GDM approaches require the acquisition,
processing, and analysis of varying kinds of data, which typically is
expressed through Key Performance Indicators (KPI), for being monitored
and controlled by using appropriate dashboards and systems (Simonov et
al., 2018).

Over the last 20 years, the processing industries have invested heavily in
automation and plant information systems such that the data is now
accessible. As a result, this data should now be possible to put into
productive usage. The challenge with raw data, no matter how accessible, is
that it is just data, and data still requires a lot of work before it can be
turned into knowledge. In most cases, the data needs to be validated,
analysed, and converted into a level of knowledge that is actionable, and
this can require a significant investment of time and resources.

Several kinds of KPI have been frequently used to analyse companies’
performance in a given context intending to reach certain organis ational
goals. Every companies’ functional group defines its objectives and targets,
and if the raw operational data can be converted in KPI for being processed
and analysed, preferably in real-time, a better monitoring and control on the
processed data can be reached and thus better decision-making processes
can occur.

Information monitoring, based on proper decision support systems (DSS)
is fundamental for obtaining maximum profit out of KPI through the use of

suitable systems’ data visualisation interfaces, and which are currently



being improved by using advanced and dynamic digital dashboards,
namely, through the use of power BI (business intelligence) graphics that
enable real-time generated data to be analysed. Although, the real potential
of a system data visualisation interface relies on its interactive ability to
quickly sort and display the consolidated performance metrics in order to
highlight the top priority requirements and provide guidance on further
actions required. This is performed through a combination of filtering,
uncertainty filtering, normalisation, weighting, aggregation, ranking, and
selection techniques, and put available through appropriate collaborative
systems and platforms (Campanella et al., 2012; ArraisCastro, 2015a,b,
2018; Jassbi et al., 2016; Varela et al., 2018; Simonov et al., 2018).

As mentioned by Knoben and Oerlemans (2006), inter-organizational
collaboration enables unification of disparate systems and solutions in order
to achieve overall strategic and operational excellence. Therefore, intra and
intercompany and manufacturing environments collaboration should be
intensified, and this can be accomplished by putting into use appropriate
group decision support approaches. Such approaches will permit fully
integrated decision-making processes among diverse manufacturing plants
and resource interactions, by using suitable platforms and systems offering
effective support to carry out distributed and integrated management. Such
unified workflow environments will thus promote and enable collaboration
and support different decision-making teams to work together with an
understanding of their specific requirements in the context of a general view
over an extended and/or virtual enterprise, which is of utmost importance in
manufacturing and management, for instance, in collective maintenance and
production management.

Maintenance planning plays an important role in every service and

manufacturing system, as it makes them more reliable and keeps them at an



optimal operational level to provide high quality services and products.
Additionally, the proportion of maintenance costs to the total production
costs, which ranges from 15% to 70% according to the type of the
manufacturing firm (McCall, 1956), makes maintenance planning a critical
issue. Maintenance models can be broadly classified into two types: time-
based and condition-based models (Rahmati et al., 2018). Recently, the
joint optimization of production and maintenance plans has gained more
attention. However, it has not been well studied compared to research on
optimising maintenance planning and production schedules independently
(Pan, Liao, and Xi, 2012; Bajestani et al., 2014; Fitouhi et al., 2017). In
addition to the above-mentioned classification of maintenance models,
integrated maintenance and production scheduling models can also be
classified into two types: integrated maintenance and production scheduling
models with time-based maintenance activities; and integrated maintenance
and production scheduling models with condition-based maintenance
activities.

Maintenance operations can be classified into two main large groups:
corrective maintenance (CM) and preventive maintenance (PM). CM
corresponds to the actions carried out when the failure has already taken
place, and PM is the action taken on a system while it is still operating. PM
is carried out in order to keep the system at the desired level of operation,
and several PM policies can be defined (Rahmati et al., 2018; Sloan and
Shanthikumar, 2000; Taghipour and Azimpoor, 2018), with the aim of
determining when it is necessary to carry out PM operations on the
machines according to different criteria used.

Besides maintenance planning, the maintenance and production
scheduling is a critical decision process for the gainful management of any

manufacturing system. While the first ensures reaching the production



goals, besides the satisfaction of customer demands, the second ensures that
manufacturing assets are available and in the proper condition to perform
their required production tasks when needed. The two decision processes
are interdependent since they share a clear common issue, the
manufacturing assets that are used through production and restored by
maintenance actions.

Integrating production and maintenance scheduling will enable
optimising the joint production orders and maintenance task programming,
while avoiding penalising drawbacks in companies (Ladj, A., Varnier, C.,
Tayeb FB-S. IPro-GA, 2016).

Although, according to the study conducted, it is possible to realis e that
there is still a gap in this research domain, as insufficient work has been put
forward regarding joint maintenance and production management strategies
and tools.

In order to provide a contribution in this focused domain, in this paper, a
GDM approach for supporting maintenance tasks assessment and selection
is presented, for enabling further joint maintenance tasks and production
orders scheduling, to reduce the lack of research that still prevails in this
scientific domain. The proposed GDM approach is based on a Dynamic
Multi-criteria  Decision Model (DMCDM) (Varela et al.,, 2018),
implemented through a two-stage maintenance tasks processing (2SMTP)
methodology, which is available through a Collaborative Management
System (CMS) that further permits the integrated maintenance tasks and
production orders scheduling.

To properly expose the developed work, this paper follows with a
resumed literature review about DSS, MCDM, and GDM, along with a
general overview about approaches and systems for supporting maintenance

and industrial operations management in Section 2. Next, the developed



collaborative management system for joint maintenance tasks and
production orders processing, along with the underlying GDM approach,
and the proposed two-stage maintenance tasks assessment and selection
method is briefly described in Section 3, and further illustrated through an
industrial example of application in Section 4. Follows a final discussion
and contextualization of this work within the state of the art in Section 5,

and the main conclusion and proposed future work in Section 6.

2. Literature Review

In this section, a general overview about decision support methods and
systems, along with GDM approaches is briefly presented next, in
subsection 2.1, followed by a summaris ed description of maintenance and

industrial operations management approaches and DSS in subsection 2.2.

2.1 Decision-making Methods and Systems for Group
Decisionmaking Support

A DSS can be explained as an interactive computer-based system, which
can be helpful for decision-makers to use quantitative models and data for
solving complex problems (Bhatt and Zaveri, 2002; Lee and Huh, 2006). A
DSS enables supporting more or less complex decision processes by using
different kinds of middleware and technology, and tools (Sprague and
Carlson, 1982; Zarate, 1991; Vieira, et al., 2018; Vafaei, et al. 2019).
Keenan (2016) mentioned that DSS have been developed since the 1970s,
and since then continued growing and improving, based on new
technologies, namely, about databases and visual interfaces applied for
properly supporting decision-making processes. DSS mostly involve
Management Science and Operations Research fields. DSS and

management strategies have thus a meaningful relationship in



manufacturing environments for reaching well-suited decisions (Brannback,
1994).

During recent decades, DSS have been developed in different contexts,
and some contributions are summaris ed next.

Group Decision Support Systems (GDSS) and Executive Information
Systems, which was changed to the Enterprise Information Systems (EIS),
introduced to support DSS tools are becoming much improved and more
effective. GDSS currently provide many wuseful options, including
brainstorming, idea assessment, and some other facilities for enabling
communication in more or less complex problem solving scenarios (Costa
et al., 2003; Limayem and Banerjee, 2006; Varela, et al., 2021), along with
other kinds of the so-called Integrated Decision Support System (IDSS) that
enable improving the effectiveness of classical DSS by combining them
(Liu et al., 2010).

More recently, DSS has been applied in integrated models with Multiple
Attribute Decision Making (MADM) and Multiple Objective Decision
Making (MODM) in a general framework of Multiple Criteria Decision
Making (MCDM) for endowing a better process and environment in
decision support (Jaramillo et al., 2005; Qureshi et al., 2017). Bakshi et al.
(2015) mentioned that when there is uncertainty in decisionmaking
processes the MCDM models will become more complicated thus requiring
appropriate Multi-Criteria Decision Support Systems to present appropriate
solutions in practice. The authors mention a new DSS established based on
models, survey (literature review), and human experts interacting through a
proposed framework. The main issue of their research was selecting the
main criteria in MCDM models. Some other studies applied this kind of

approach in practice, and some are resumed next, to mention a few.



Taha and Rostam (2012) applied a hybrid fuzzy AHP-PROMETHEE as
the main part of a DSS for machine tool selection in a flexible
manufacturing cell. They mentioned that their research shows that MCDM
methods can be a useful part of a DSS and that their vision would be helpful
in decision-making in solving complex cases.

Razmak and Aouni (2015) reviewed research related to MCDA and DSS
and found more than 100 research articles for analysis. They categoris ed
the articles into nine different sections, regarding their application fields
which. were: Production and Supply Chain Management; Education;
Human Resource Management; Finance and Investments; Real Estate and
Constructions; Environmental aspects; Medical aspects; Electronic business
and electronic commerce, and Multimedia.

Leyva Lopez et al. (2016) proposed a model and system for supporting
group decision-making based on a MCDM approach. The authors state that
their approach was structured and based on the ELECTRE method and
designed completely based on the web to make the underlying process more
reachable and easier applicable in practice. Their proposed GDSS enables
them to put forward some advice for decision makers in order to help them
manage their priorities and preferences to allow proper decision rules with
some degree of consistency and consensus.

In other works (Arrais-Castro et al., 2018; Simonov et al., 2018; Varela et
al., 2018), DSS models were proposed by using different kinds of
approaches, in various application contexts. According to the examples
provided, it is possible to realise that DSS and approaches are applied in
various contexts and manufacturing and management environments, thus
there is still a need for new contributions to increase its full practical
capability and usability, for instance, in the industrial context. Furthermore,

decision-making, with uncertainty treatment and future or prospected data



processing, needs integrated and advanced DSS models and systems to
continue being developed to decrease ambiguity and vagueness of
knowledge about forecasted data, which has become, especially currently,
in the digital age, more urgent and necessary, for putting into practical use

in manufacturing management (Putnik et al., 2021).

2.2 Approaches and Systems for Supporting Maintenance and
Industrial operations Management

Maintenance is a crucial activity in industry, with a significant impact on
costs and reliability, being immensely influential on a company’s ability to
be innovative, while permitting costs reduction and global benefits, namely,
increased quality and general performance.

In the scope of maintenance management, any unplanned downtime of
machinery equipment or devices usually degrades or harms a company’s
core business, potentially resulting in significant penalties and
unmeasurable reputation loss. According to some studies, operation and
maintenance costs can range from 15% to 70% of total production cost in
some companies (Bevilacqua and Braglia, 2000; Gong and Qiao, 2014).
Therefore, it is critical for companies to develop a well-implemented and
efficient maintenance strategy to prevent unexpected drawbacks, and
improve overall reliability, while reducing manufacturing systems’
operating and maintenance costs.

The evolution of modern techniques, namely with the emergence of the
Internet of things (IoT), along with varying kind of sensing technology, and
new or improved artificial intelligence approaches and tools, among others,
stimulates a transition of maintenance strategies from Reactive
Maintenance (RM) to Preventive Maintenance (PM), and to Predictive
Maintenance (PdM) (Jimenez et al., 2020). RM is only executed to restore

the operating state of the equipment after failure occurs, and thus tends to



cause serious unproductive times, while frequently resulting in high
response and reparation costs. PM 1is carried out according to a planned
schedule based on time or process iterations to prevent breakdown, and thus
may perform unnecessary maintenance, typically resulting in high
prevention costs. To achieve the best trade-off between the RM and PM, the
PdM can be performed, based on some online assessment of the condition
of manufacturing assets, and thus reach timely interventions before failure
occurs, while preventing high maintenance frequency, unplanned RM, and
the incurrence in increased costs associated to frequent PM.

Asset management deals with the optimization of manufacturing assets
used for reducing costs. An asset management system manages the assets
over the whole life cycle, especially their reliability and efficiency. It is also
responsible for optimising utilisation and cost-effective maintenance of the
assets. Moreover, it generates and provides information regarding the so-
called “asset health” development and prognosis to support decisionmaking
of the enterprises’ production management (Namur 2009). Using the “asset
health” information to generate an optimal production plan is a viable
solution to better integrate a maintenance and a production planning system
to increase the overall performance (e.g., in terms of costs) of
manufacturing operations. Although some work was already carried out in
this sense, industry is still lacking appropriate and effective systems for
supporting advanced maintenance and production management (Zhai et al.,
2021).

Biondi and Harjunkoski (2017) proposed a joint scheduling approach for
the production and maintenance of process plants that explicitly keeps track
of the assets’ life cycle. The scheduling system includes a simple model of
the asset wear that can be based on the concept of residual useful life (RUL)

or of probability of failure. The authors state that the asset monitoring



system 1is responsible for providing two types of information to the
scheduling system: on the one hand, an estimation of the parameters
describing the wear caused by the production on the asset. On the other
hand, if an extraordinary condition of the asset is detected, it is responsible
for updating a current RUL in the asset wear model of the scheduling
system. Assets’ health information, along with the production orders, is
managed by the scheduling system that takes care of the sequencing and
timing of production tasks on the plant and triggers a maintenance action on
the assets whenever this is required. According to the authors, their
proposed method makes an effective use of factory units’ health
information to generate a feasible plan for joint production and maintenance
planning (Biondi and Harjunkoski, 2017).

Based on Staufen (2018), PM has not been properly explored in the
industry. A survey in 2020 shows that PM continues to be a hot topic, for
example, to determine the best point in time to do maintenance tasks (Zhai
et al., 2020).

Two types of flexible PM strategies, i.e., time-based PM (TBPM) and
condition-based PM (CBPM), are commonly analysed and applied (Wang,
Yan, and Zhang, 2021). According to these authors, the application of
TBPM is straightforward and relative ease of implementation, however,
TBPM may lead to under-or over-maintenance due to inaccurate estimates
of the stability of production systems. In contrast, CBPM is of more
complexity, which continuously monitors and analyses the machine status
to determine the implementation of the maintenance activity. The authors
state that despite the complexity of computational requirements and uneven
maintenance cycles, CBPM strategy can reduce the maintenance frequency
to a minimum necessary level, thus improving a global production system’s

productivity level.



Some examples of application of TBPM in diverse kinds of production
scenarios, integrating different production scheduling strategies, are
presented by several researchers (Chen, 2000; Chen et al., 2006; Mosheiov
and Sarig, 2009; Yang et al., 2011), while CBPM has also been focused by
several other researchers, for instance (Zandieh et al., 2017; Rahmati et al.,
2018; Sloan and Shanthikumar, 2000; Ghaleb et al., 2020), just to mention a
few.

Prognostics and health management (PHM) is a relatively young
engineering discipline that aims to enable “real-time health assessment of a
system under its actual operating conditions as well as the prediction of its
future state based on up-to-date information” (Kim N-H, An D, Choi J-H,
2017), with PAM being the underlying maintenance strategy that uses
prognostics results of PHM.

(Li et al., 2019) state that varying operational conditions have two major
effects on system degradation: Firstly, varying operational conditions
influence the speed of degradation. Secondly, they lead to sudden signal
changes and change points, which result in high variance of raw sensor
readings. Thus, varying operational conditions pose an obstacle to
prognostics (Zhang et al., 2020) and are considered to be a focal point for
modern PdM modelling (Aydemir and Acar, 2018).

According to Assaf, Scarf, and Tung (2019), prognostics incorporates
three tasks: ‘““State estimation” (estimate the current health or degradation
state of the system based on historical data), ““State prediction” (predict the
health or degradation state for future periods based on historical data),
‘Eol” (““End of Life”) or “RUL prediction”: Determine the RUL before
failure or before exceeding the failure threshold for some identified

degradation behaviour. The author highlights that RUL can refer to actual



failure or remaining time until certain quality requirements of a product
cannot be met.

Databased RUL prediction can be formulated as a supervised (Aggarwal
et al., 2018) or a semi-supervised machine learning (ML) problem (Yoon et
al., 2017). According to these authors, the high amount of required failure
data to derive RUL labels for supervised prediction models is often not
available in industrial practice.

Health prognostic approaches in PHM are commonly classified into
physics-based, knowledge-based, and data-driven approaches (Bektas et al.,
2019). Physics-based models describe the phenomena of failure and
degradation as physical or mathematical “white box” models. Although
physics-based models can achieve high accuracy, their development is
usually costly (Bektas et al., 2019). Knowledge-based models collect
identified degradation behaviours and failure events in a historic database
and assess the similarity of a currently observed system state with the
entries of a knowledge base (Sikorska et al., 2011). Data-based approaches
make use of the system condition monitoring (CM) data to derive
transparency of the system health state and predict the RUL (Song et al.,
2018; Jia et al., 2018; Wang et al., 2017), further enabling to assess the
uncertainty of the prediction (Benker et al., 2020). Data-based methods
encourage the use of highly adaptable ML, including deep learning (DL)
algorithms (Zhang et al., 2018), in scenarios where large amounts of
condition monitoring data are available and the system operation is subject
to variations, partially unknown conditions or a variety of failure modes.

For an overview of knowledge-based approaches, as well as advantages
and limitations of data- and knowledge-based approaches, the reader is

referred to Ran et al., (2019), where a survey of predictive maintenance



systems purposes and approaches is presented. Next, some additional work
is briefly referred to.

The authors in Malhotra et al. (2016) propose an approach for combined
health indicator (HI) estimation and RUL prediction. The publications by
Wang (2010) and Wang et al. (2008) are among the first research works to
explicitly consider the effects of time-varying operating conditions on
system degradation analysis.

Li et al. (2019) model a dynamic, operation-specific degradation rate as a
state transition function based on Wiener process and time-scale
transformations, which capture the effect of operating conditions on the
degradation curve. A measurement function smoothens the jumps in the
degradation signal at operation condition change points by mapping each
condition to a condition-specific baseline. The approach proposed by the
authors is evaluated on a simulated data set of bearings, which are subject
to varying rotational speeds, as well as on a data set from an accelerated
degradation experimental study of rolling element bearings.

Luo et al. (2019) propose a DL approach for health estimation and fault
detection of CNC machine tools operating under time-varying conditions.
In the first step, the authors use a DL model composed of stacked auto
encoders (AE) and a feed forward neural network to extract impulse
responses from vibrational CM data. The training and test data sets for the
DL model are prepared manually by labelling whether randomly selected
time windows contain an impulse response or not. In case of an impulse
response, the vibration signal represents the reaction of the system to
sudden forces and impacts during time-varying machining processes. After
training, the DL model is used to automatically identify impulse responses
in the CM data. Subsequently, the first four natural frequencies and the

damping reactions of the machine tools are extracted from two different



impulse responses representing two different working conditions. The
authors find that the natural frequencies barely change with varying
operational conditions and thus are a robust feature for HI construction. The
HI is computed as the cosine similarity in the space of extracted dynamic
features comparing current observations with an initial vector representing
the normal state. According to the authors, since the HI is based on
operation-condition invariant features, the HI is robust to different working
conditions. However, the approach is not capable of performing an
operation-specific prediction of system health for future loads. In contrast to
most other research, the approach was evaluated on a real industrial data
set, composed of vibration signals from 288 days of industrial operation.
Michau and Fink (2019) propose an unsupervised approach for system
monitoring in a setting where a fleet of similar safety-critical systems is to
be monitored over time. The training data for a specific system instance is
enhanced by CM data from other instances of the fleet to enable CM early
in a system’s operational life. The authors use a variational auto encoder
(VAE) architecture to model a shared latent space for the fleet, which is
trained in an adversarial manner. A new loss function is designed to
preserve instance-specific behaviours in the shared latent space. The health
prediction is framed as a one-class classification, which aims at predicting
whether the CM data is faulty or healthy. The method is evaluated using a
real data set from a fleet of 112 power plants operated in different
geographical locations and under different operational conditions. The
authors say that their results show that the shared latent representation and
feature alignment yield an efficient and unsupervised feature representation
in a setting of complex systems subject to varying conditions, which is

useful for downstream PHM modelling.



The integrated optimization of production scheduling and machine
maintenance has been known as a complex combinatorial optimization
problem, in which heuristic or meta-heuristic approaches are commonly
employed aiming to find some satisfied solutions in a short time. With the
advent of artificial intelligence and ML and DL, the application of
scheduling rules-based reinforcement learning (RL) to the field of
scheduling has become possible (Wang and Usher, 2005). However, little
empirical research concerning the application of RL to integrated decision
making of production scheduling and machine maintenance has been
conducted (S. Zhai, B. Gehring, G. Reinhart, 2021).

In S. Zhai, B. Gehring, G. Reinhart (2021), a machine degradation
modelling under varying operational conditions, enabling subsequent
integrated scheduling of maintenance and production (“PdM-integrated
production scheduling”: PAM-IPS) is introduced. The underlying model is a
conditional variational auto encoder (CVAE) that is used for calculating and
quantifying the change of the machine health condition after producing
specific product sequences.

The gap that continues existing regarding contributions of integrated
maintenance and production management approaches and systems
motivated this work, in order to contribute to this scientific domain, and the
proposed collaborative management system, based on a group decision-

making approach is briefly described and illustrated in the next sections.

3. Collaborative Management System Based on a Group
Decision-making Approach

Collaborative management is of utmost importance in the current digital
age, enabling and promoting a sustainable development of companies
(Varela, Putnik, and Romero, 2022, 2023; Varela et al., 2022 a,b, 2023). In

this paper, a group decision-making architecture is proposed to enable



collaborative management, and Figure 1 shows an example of its
application in an industrial company that includes three work centres (WCI,
WC2, and WC3), which interact with each other and with the main
company’s factory, through its underlying brokering service, besides

communicating with clients, and maintenance technicians.
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Figure 1. Group decision-making architecture.<!

A CMS underlying the proposed GDM architecture was developed to
enable intra and inter factories and/or work centres collaboration for jointly
reaching integrated maintenance tasks and production operations
scheduling, and an interface of the CMS is shown in Figure 2, an interface
for processing a data fusion function of the DMCDM used in this work that

will be further explained through an application example.
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Figure 2. Collaborative management system's interface illustration: data fusion
function.<

This CMS enables a wide range of diverse management functions in
industrial management, namely, underlying the proposed GDM approach,
which is carried out by using a maintenance tasks processing methodology
with three phases, based on a two-stage assessment method, which makes

use of a DMCDM, as expressed in the Figure 3.
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Figure 3. Proposed maintenance tasks processing methodology based on a two-stage
assessment method. <

The two-stage assessment method based on DMCDM was used in an
industrial company, in the scope of a research project to enable the joint
processing of maintenance and production orders information, and a case

study is briefly described next.
4. Application Example

4.1 Maintenance Tasks Assessment Methodology Based on a
DMDCM
The maintenance tasks assessment methodology used in this work uses a
DMCDM (Jassbi et al., 2013; Varela et al., 2018), by including two stages,
for intra- and inter-work centres tasks’ evaluation and selection.

1st Stage) Intra-work centres evaluation: Includes 6 steps: normalis
ing/ fuzzifying, weighting, uncertainty filtering, and data aggregation or
fusion, for ranking and selecting the maintenance tasks (Varela,
ArraisCastro, and Ribeiro, 2018).



Step 1) Data acquisition and matrices construction: First, the
definition of the evaluation criteria for processing the data about 3
moments: past, present, and future, have to be defined, and Figures 4, 5 and
6 show an example for the company’s WCI, by using different kinds of
criteria, about: maintenance cost (MC), Lack of Production Quality (LPQ),
Overall Equipment Effectiveness (OEE), Lack of Safety Indicator (LSI),
Mean Time Between Failures (MTBF), Mean Time To Repair (MTTR), and
Downtime (DT), for processing past and future maintenance tasks’ data;
and MC, along with Service Time (ST), and Lead Time (LT), for processing
current maintenance tasks’ data, which were applied for ranking a set of six
maintenance tasks (M1 1 to M1 6) of WCI. The current or present data is
acquired, in real-time from the shop floor, by using appropriate

communication means and devices (Vieira et al., 2018; Varela et al., 2021).

Figure 4. Past data matrix (Varela et al. 2024).d

Mean | Mea
. Lack of Overall Lack of . .
. Maint. . . Time Tim
Maint. Production | Equipment Safety
Cost . . . Between | To
Task MC Quality | Effectiveness | Indicator Failures | Reps
LR 100%) OEE LSI

Q | (00%) MTBF |[MT1
MT1_1 | 630,00 28% 88 18% 28000 2
MT1_ 2 | 398,50 33% 79 14% 17500 4
MT1_3 | 400,00 17% 90 1% 18900 3
MT1_4 | 730,00 20% 85 13% 22400 2
MT1_5 | 490,00 15% 83 15% 15600 5
MT1_6 | 330,00 12% 92 12% 20580 1

v



Figure 5. Present data matrix (Varela et al. 2024).<

Extended ST
Maint. Maintenance Service Lead (EST)
Task Cost MC Time ST Time LT | ST * (max(LT-
d).0)
635,00 100 5 105
MT1 2 405.00 120 2 122
MT1_3 410.00 85 4 83
MT1_4 650.00 30 3 33
MT1_5 450.00 100 4 104
HT1_6 335.00 115 3 118
Figure 6. Future data matrix (Varela et al. 2024).d
. Overal . M.ean M.ea]
Maint. Maint. Equipment | Downtime Produc.tlon Time Time
Task Lt Effectiuness DT YTl To . Befwe'
MC OEE PQ Repair Fallur
MTTR | MTB
640,00 55% 30 56% 5 23500
MT1 2 | 495,50 90% 35 92% 10 13000
MT1_3 | 410,00 70% 17 55% 6 25500
MT1_ 4 | 700,00 75% 10 73% 7 15000
MT1 5 | 395,00 73% 20 50% 9 14000
MT1 6 | 340,00 54% 15 90% 4 11000

4

The future data can be obtained by applying some forecasting method,

namely, by using some ML approach (Putnik et al. 2021) or be based on

known real or estimated data. Prediction may also be performed using

expert judgement or quantitative methods (forecasting), such as moving

linear averages, quadratic averages, and other techniques.



Step 2 Normali sation/fuzzification

In the second step, a normalisation/ fuzzification process underlying the
DMCDM (Varela, Arrais-Castro, and Ribeiro, 2018) was performed (Figure
7), to process imprecision by using fuzzy logic for criterion evaluation.
Normalisation guarantees that values are numerical and comparable, simple
triangular membership functions were used to represent the acceptable
criterion values, as all expected criteria fit in the “lower is better” and
“higher is better” categories (Varela and Ribeiro, 2003). This process is
essential to enable values aggregation, and the simplest method consists on
dividing a value by the maximum existing one in the set (when high values
are favourable to the decision) or by the minimum (when low values are

favourable, such as a cost) (Jassbi et al., 2014).

MC
X u(x)

14 630,00 0,250

2.1 398,50 0,829

54 400,00 0,825

4,1 730,00 0,000

5,1 490,00 0,600 bi 230

| 330,00 1,000 pi 4001 (730-330)

Figure 7. Normalisation and fuzzification example for the MC criterion (Varela et al.
2024).d4

Step 3 Uncertainty filtering

In order to filter uncertainty, a method underlying the DMCDM referred to
in Varela, Arrais-Castro, and Ribeiro (2018) is used, which considers two
parameters, accuracy and confidence to ¢ filter’ the membership function
values. The accuracy parameter expresses deviations from nominal values

and the confidence expresses the degree of trust on the data gathered.



The logic of this filtering process is that if we do not trust an input source
(e.g., confidence on data is only 80%) then the initial value must decrease
proportionally (e.g., a value 10 would be reduced to 8), Thus
accommodating deviations in the value, for example, +3 or —3 from a value
of 10.

Let a;; be the accuracy associated with criterion j for MT7, representing a
left or right deviation from the original value; when aj; is zero it means we
accept the gathered value without deviation errors.

The confidence, wc;, is a percentage, as for example, we trust with 90%
the values for “Maintenance Cost, MC”".

Additionally, A€ [0,1], is a parameter that reflects the decision-maker’s
attitude. Values close to zero indicate an optimistic attitude; higher values
indicate a pessimist attitude.

The accuracy rate, expressing the allowed deviation from the base values,
is defined for each criterion, based on the associated data quality. The value
also reflects the imprecision associated with the data gathering process.
Based on the criteria and its associated confidence rates, the filtered
imprecision values, fu; (e.g., acij), were calculated, as illustrated next for
the MC criterion.

Hence, the adjusted membership value is calculated using the following
formula (Varela et al., 2018):

fuij = wej x (1 — X max {|p(z) — p(2i)|} * w(2i;)) (1)

z€la,b]

Where [a,b] 1s the inaccuracy interval:

B min(D), &if x;; — a;; < min(D) (2)
“= zTij — aij, & if xij — a;; > min(D)



b T;; + aij, &if Tij + a;; < maX(D) (3)
max (D), &if x;;+ a;; > max(D)

Using the function (1), along with (2) and (3), we are able to penalis e
input values, which display any of the two types of uncertainty, i.e.,
inaccuracies or lack of confidence on data, within an optimist or pessimist

view from the decision maker.

Figure 8. Uncertainty filtering example for the MC criterion
(Varela et al. 2024).

MC
we; | 100% | 2 | 1 (in)acuracy int 0% | pi | 400
iLj | u(xij) | xij | aij a ufa) [ b | u(b) | acij

1.1 0,250 630
2.1 0,829 399
3.1 0,825 400
4.1 0,000 730
5.1 0,600 490
6.1 1,000 330

630 | 0250 630 0,250 0,250
399 0,829 399 0,829| 0,829
400 | 0,825 400 | 0,825| 0,825
730 | 0,000 | 730 0,000 | 0,000
490 | 0,600 | 490 | 0,600 | 0,600
330 | 1,000 330| 1,000 | 1,000

=N E—N E—3 =N E—2 K]

Step 4 Weighting

Step 4 enables us to allow different weights for different temporal stages or
criterion. Here we will use linear weighting functions to express the relative
importance of criteria. These functions allow penalis ing or rewarding bad
or good levels of criteria satisfaction, i.e., instead of assigning single
weights, we represent them using a function that depends on criteria

satisfaction (equation 4):

S 0<a,B<1 4)



where a defines the semantic importance of criteria (‘1° —very important,

. ‘0’ -ignored), and the B parameter defines the slope for the weighting
function (a higher value or slope means a steeper function, thus a higher
penalty, e.g., ‘1’, and ‘0’ —null penalization) to penalise, more or less, badly
satisfied criteria. For example, if we assign to criterion Maintenance Cost,
MC the values a=1 and P=0.67, we are defining this cost as a “very
important” evaluation parameter with an average slope decrease. In this
case, we want to reward the best quotes and penalise the bad ones (i.e., we

want to reward lower costs).

Figure 9. Weighting example for the MC criterion (Varela et al.

2024).

j=1 (MC)
i,j fuij alfa beta L(fuij)
1.1 0,250 1 0,670 0,699
2.1 0,B29 1 0,670 0,931
3.1 0,B25 1 0,670 0,930
4.1 0,000 1 0,670 0,599
5.1 0,600 1 0,670 0,B40
6.1 1,000 1 0,670 1,000

Step 5 Aggregation

After the four previous steps, we have a weighted vector for each criterion.
Step 5 i1s to determine the score (rating) for each time period, i.e., past,
current, and future, by using an approach that is illustrated for the past
values about the MC criterion. The following results were obtained for

historic information, using the data fusion (equation 5):



Figure 10. Aggregation example for the MC
data matrix (Varela et al. 2024).

criterion in the past

i | MC|OEE | DT |PQI | MTTR | MTBF | SI [i]| r; | Maint. Task
110,037 | 0,053 |0,025] 0,142 0,000 0,020 10,177 | 1 | 0,455 MT1_1
210,145] 0,111 | 0,155 | 0,041 0,074 0,057 0,052 |21 0,655 MT1_2
310,170 | 0,022 | 0,013 | 0,000 0,072 0,043 10,000 |5 | 0,320 MT1_3
40,000 | 0,040 [0,055] 0,032 | 0,041 0,022 | 0,000 |4]0,191 MT1 4
510,100 | 0,011 | 0,057 | 0,051 0,107 0,055 |0,167 | S| 0,601 MT1_5
510,220 | 0,000 | 0,000 | 0,014 0,055 0,000 |0,073 | 6 | 0,352 MT1_6
| L(puy) ‘ )
r; = sum -\ 1 * fuz]/'
Zn L (fuij)

Step 6 Decision
Once applying the steps underlying the DMCDM: normalis ation/

fuzzification, weighing, uncertainty filtering, and aggregation or data fusion
to the past information of the WCl, it is possible to obtain the following

rankings of the corresponding 6 maintenance tasks considered in this

example:
Figure 11. Decision matrices example for the MC criterion (Varela
et al. 2024).
Maint. Task Score Position

MT1_2 0,65644141 1

MT1_5 0,6009151 2

MT1_1 0,48491111 3

MT1_6 0,36222612 4

MT1_3 0,31985451 5

MT1_4 0,19085262 6

Next, we repeat the process underlying the DMCDM for future

information, and in this case study the same criteria that have been used for




past information evaluation that were used for future data processing. Once
having calculated the historical and prediction (future) scores for each
alternative, we also need to evaluate the present status (present data).

Evaluating the present or current data means to evaluate the
proposals/quotes that have been received and then fusion the respective
information. For that purpose, the following criteria were used to evaluate
present data: MC (Maintenance Cost), ST (Service Time), and LT (Lead
Time), as previously shown.

Summarising, the final ratings of the maintenance tasks regarding past,
future, and present data, for the WCI1, along with the final ratings, after
final data weighting and fusion results for the WC1 are presented in Figure
12.

Figure 12. Past, future, present, and final scores matrix examples
for all the criteria in WC1 (Varela et al. 2024).d

WC1 - past

Maint. Task Score Positi on
MT1 2 0,65644141 1
MT1 5 0,6009151 2
MT1_1 0,48491111 3
MT1_6 0,36222612 4
MT1_3 0,31985451 5
MT1_4 0,19085262 6

WC1 - future

Maint. Task Score Position
MT1_6 0,26894646 1
MT1_3 0,20261408 2
MT1 2 0,19190658 3
MT1_5 0,18941079 4
MT1_3 0,17917192 5
MT1_4 0,08739849 6

WCI - present




Maint. Task C1 - pssendt Position

Maint. Task Score Position
MT1_3 0,87521921 1
MT1_6 0,70014439 2
MT1_5 0,64948589 3
MT 1_4 0,59392525 4
MT1 2 0,50540424 5
MT1_1 0,30551333 6

WC1 - final scores

Maint. Task Score Position
MT1_3 0,5652022 1
MT1_5 0,5343635 2
MT1_6 0,4947301 3
MT1 2 0,4929897 4
MT1_4 0,3549720 5
MT1_1 0,3428058 6

After the application of the same procedure that has been used for

processing the information related to WCI to the other two work centres
(WC2 and WC3), by accomplishing the same main 5 steps of the DMCDM,
the following final maintenance tasks’ rankings have been obtained for
these WC2 and WC3 (Figure 13).

Figure 13. Final scores matrix examples for all criteria underlying
past, present, and future fused data about WC2 and WC3 (Varela et

al. 2024).4
WC2 - final scores
Maint. Task Score Position
MT2 2 0,5699688 1
MT2_6 0,5284007 2
MT2 5 0,4882188 3
MT2_4 0,3952934 4
MT2 3 0,38M716 5




WC?2 - final scores

Maint. Task Score Position

MT2 1 0,3742694 6
WC3 - final scores

Maint. Task Score Position
MT3_1 0,6617229 1
MT3 2 0,5652877 2
MT3_5 0,4242146 3
MT3 3 0,4114283 M
M53 6 0, 9035M 5
MT3_4 0,3958268 6

Next, the two maintenance tasks, out of each WC, with the higher ratings
shown next are selected for further processing in the 2nd stage of the
maintenance data processing method.

It is important to note that despite M1 3 not having good rankings in
terms of historical data evaluation, it benefits from the greater importance
that has been given in WC1 to the present or current data.

Although, regarding the MT1 5, it reaches a higher rating than MT1 6,
besides being a little worse positioned in terms of present data ratings, and
with considerably worse position regarding future data, as the past data has
an higher impact in the final rating than the provisional of future data,

which in this case this favours MT1 5.

2nd stage) Inter-work centres evaluation

In the 2nd stage, the DMCDN is repeated for the best rankings obtained in
the 1st stage. Thus, follows the application of the same approach to the six
maintenance tasks from the 1% stage with a higher ranking to be further
processed based on the application of the same DMCDM by the whole set
of decision-makers underlying the WC1, WC2, and WC3, to obtain the

final list of the three maintenance tasks with higher priority for being jointly



scheduled with the production orders, by repeating the application of the
same main 5 steps that were previously applied on each WC.

In this 2nd stage of the method, a higher importance has been given to
the past data, followed by present and less importance to the future data, to
obtain the final overall rankings.

Thus, the 3 maintenance tasks with better ratings, out of the set of the six
maintenance tasks list including the two of each WC with a higher priority,
that were reached for being jointly scheduled with the production orders are
the following: MT2 2 (being redefined as simply M2, the M3 2, redefined
as M3, and M1 5, redefined as M1).

Figure 14. (a) Aggregated final scores' matrices about WCI1, WC2,
and WC2 from the application of the st stage and (b) the 2nd stage
of the maintenance tasks assessment methodology (Varela et al.

2024).
(a) Final scores of MTi from 1% stage

i Score Maint. Task

1 0,5652022 MT1_3

2 0,5343635 MT1_5

3 0,5699688 MT2 2

4 0,5284007 MT2 5

5 0,6617229 MT3 1

6 0,5652877 MT3 2

(b) Final rankings of MTi from 2"9 stage
Maint. Task Score Position

MT2 2 0,6463834 1
MT3 2 0,5581164 2
MT1_5 0,4785514 3
MT3 1 0,4774147 4
MT2_6 0,4337532 5
MT1_3 0,1708652 6




It 1s important to notice that eventually other criteria and importance
could be defined for accomplishing this second stage of the decision

method.

4.2 Collaborative Scheduling: Joint selected maintenance tasks
and production orders programming

The joint collaborative scheduling is performed next, based on the model
presented in Varela, et al. (2022b), to jointly program a current set of
companies’ production orders, along with the previously selected set of the
three maintenance tasks with higher scores: MT2 2 that will now be
defined simply as M2, MT3 2 as M3, and M1 _5 as MI, related to the
workcentres WC1, WC2, and WC3, correspondingly, and alternative

possible solutions are shown in the Figures 15 to 17 below.
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Figure 15. Gantt charts about the best solution found for scenario 1 (about the
minimization of the internal performance measure, makespan, Cmax) (adapted from:
Varela et al., 2022b).<&

WorkCentre

(WCk)

Figure 17. Gantt charts about the best solution found for scenario 3 (about the
combined (50%—50%) minimization of both kinds of measures, Cmax, and Nt) (adapted
from: Varela, et al., 2022b).<



These Gantt charts express possible alternative solutions for jointly
scheduling the maintenance tasks and a set of 10 lots of production orders
(L1 to L10), based on the preference that is given by the decision-making
team regarding internal oriented performance measures (makespan) (Figure
15) or external oriented ones (tardiness and tardy tasks) (Figure 16) or a
combination of internal and external measures (makespan and tardy tasks)
(Figure 17). Thus, the developed CMS provides additional flexibility by
enabling to choose the best suited application scenario, by using appropriate
scheduling algorithms available for processing the joint maintenance and
production tasks, according to a given industrial context and management

preferences or goals of the decision making team.
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Figure 16. Gantt charts about the best solution found for scenario 2 (about the
minimization of external measures, tardy jobs, Nt, and maximum tardiness, Tmax)
(adapted from: Varela et al., 2022b).<!

5. Final Discussion

According to a study conducted, and by analysing a set of 20 publications
about maintenance and production management, a resume of main
contributions from the literature were analysed, considering a set of seven
main dimensions underlying this study which are: dynamic, integrated, real-
time, distributed, and predictive management strategies (Varela et al.,
2023), along with time- and condition-based maintenance, as synthetized in
the Table 1.



Table 1. Resume of main dimensions of literature contributions a
(adapted from (Varela et al. 2024)).<

Real :
Dynamic | Integrated | time | Distributed | Predictive
based

Dimension
Contribution

(Aggarwal, et al.,
2018)

(Assaf, Scarf, &
Tung, 2019)

X X X

(Aydemir, Acar,
2020)

(Bektas,
Marshall, & X X X
Jones, 2020)

(Benker, et al.,
2021)

(Biondi, &
Harjunkoski, X X X X
2017)

(Lee, & Chen,
2000)

(Ghaleb,
Taghipour,
Sharifi, & X
Zolfagharinia,
2020)

(Kim N-H, An D,
& Choi J-H, X X
2017)
(Li, et al., 2019) X X X
(Luo, et al., 2019) X X X

(Malhotra, et al.,
2016)
(Michau & Fink,
2019)




Real :
Dynamic | Integrated | time | Distributed | Predictive
based

Dimension
Contribution

(Mosheiov, &
Sarig, 2009)

(Rahmati,
Ahmadi, & X X X
Govindan, 2018)

(Sloan, &
Shanthikumar, X
2000)

(Wang, & Yu,
2010)

(Yang, Ma, Xu,
& Yang, 2011)
(Zandieh,
Khatami, & X
Rahmati, 2017
(Zhai, B.
Gehring, & X X X X
Reinhart, 2021)

This work X X X X X

The analysed publications listed in the Table 1 show that, on average, three
to four of the dimensions proposed for carrying out the collaborative
maintenance and production management are considered. Therefore, it is
noticeable that this work is novel and that there is still a gap regarding these

kinds of contributions in the focused scientific and technological domain.

6. Conclusion
In this paper, a GDM approach for maintenance tasks ranking and selection
for being jointly scheduled with production orders was put forward. The

proposed approach was implemented based on a twostage assessment



method, which makes use of the DMCDM. The DMCDM enables to merge
and jointly process and analyse maintenance information regarding
historical, current, and provisional data, based on corresponding subsets of
criteria, which are defined according to a group of decision-makers that
interact on its definition and application of the proposed underlying
maintenance tasks processing methodology, which is accessible through a
developed CMS, accessible by a set of entities for enabling joint decision-
making. The utilisation of the proposed GDM approach was illustrated
through an industrial example of application and it revealed to be promising
in supporting joint maintenance and manufacturing orders processing, once
permitting to rank and select a set of maintenance tasks with the highest
scores for being jointly scheduled with production orders by using other
functionalities included in the CMS. This is a novel contribution, as far as
our knowledge, and based on the study conducted there are no similar
contributions in the literature that enable a distributed and dynamic
maintenance tasks assessment and selection, based on a DMCDM, for being
further jointly programmed with production orders, through the CMS.
Besides, the CMS includes another functionality, namely, for predicting
maintenance key performance indicators, which are considered through
criteria included in the prognostic data processed using the DMCDM, such
as mean time before failure. Thus, this work contributes to the maintenance
and production orders management scientific domain, which continues
lacking contributions that enables CDM, which is considered of utmost
importance to promote a sustainable development of companies, and is
supported by new technologies underlying the current digital age, being still
necessary for further developments and industrial applications to be

explored.
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6
Blockchain-based Multi-agent System
Framework for Collaborative Distributed
Manufacturing System

In recent years, new collaborative manufacturing models such as distributed
manufacturing and social manufacturing have attracted much attention as
they have the potential to further transform existing production models and
industrial structures. Blockchain as a new distributed computing
architecture is successfully used in manufacturing to solve problems such as
interoperability and collaboration, security and surveillance, marketing and
protocols, democratic organization, global value chain management, etc.
However, despite the utilization of agent-based technology to negotiate
contracts among peers, security concerns persist. To address these
challenges, this chapter proposes a blockchain-based multi-agent distributed
framework tailored for the manufacturing sector. that aims to provide new
ideas for co-design, implementation, and optimization of production and

facilitate the upgrading and transformation of manufacturing industries.

1. Introduction

To minimize expenditures and enhance productivity, conventional
manufacturing frequently depends on centralized, standardized large-scale
production and customized mass production. However, this approach
presents challenges. Static company configurations make it difficult to
change, expand and integrate. The constrained product paradigm struggles
to cater to the demands of individual users, and the system’s rigidity is

unsuitable for the dynamic oversight of production tasks.



With the rise of the worldwide marketplace and the onset of the digital
economic era, product markets and consumer demands have grown
progressively fragmented. Labour and collaboration networks within social
spheres are 1mproving, and personalized, consumer-centric product
innovation is emerging as the latest trend, aided by advanced technologies
like 3D printing and RFID. Lean, modular, cooperative production
approaches such as distributed manufacturing (DM) and social
manufacturing (SM) are now feasible.

While the potential of these cooperative manufacturing methods is bright,
they encounter diverse needs spanning technology, services, infrastructure,
and resources, particularly given the gradual refinement of associated
elements and institutional components. Blockchain technology is
anticipated to serve as the optimal digital foundation for integration.
Furthermore, when paired with blockchain-powered smart contracts,
programmable assets enable the establishment of secure and streamlined
information exchange, value transfer, and asset administration, ultimately
leading to a significant overhaul of business models and existing social
production relations.

Classical manufacturing scheduling operates under the assumption that
manufacturing resources are situated in close geographic proximity.
However, in reality, these resources, known as distributed manufacturing
resources, are dispersed across various enterprises located in disparate
spatial locations. Addressing the challenge of coordinating shared
scheduling of distributed manufacturing resources (SSDMR) proves
complex and arduous. Multi-agent technology assumes a crucial role in
managing intricate, dynamic, and decentralized scheduling dilemmas. To
tackle the present SSDMR predicament, two distinct architectures of multi-

agent systems are devised. One constitutes an enterprise multi-agent



subsystem, featuring a hierarchical arrangement, abstracted from the
conventional hierarchical structure of manufacturing enterprises. The other
entails an enterprise alliance multi-agent system, characterized by a
federated architecture. Subsequent sections expound upon the SSDMR
issue and elucidate the shared architecture of multi-agent systems.

As DM, Multi agent Systems, Blockchain are relatively new concepts
that have yet to be fully realized. Many scholars have proposed conceptual
models and frameworks to guide and accelerate their creation but the
potential impact of blockchain has not been adequately captured. As a first
attempt in this area, building on existing work, this chapter initially
classifies the challenge of achieving the aforementioned mode of
production into five several groups: interoperability and collaboration,
security and monitoring, marketing and protocols, democratic organization,
global governance and value chains. Taking into account these challenges
and corresponding blockchain solutions, as well as key processes, the
blockchain based multi agent distributed manufacturing system has been
developed.

The article follows this structure: Section 2 surveys the literature and
introduces the basic concepts; Section 3 describes the challenges; Section 4
presents a blockchain-based framework for collaborative manufacturing and
demonstrates it through practical application examples. Finally, Section 5

presents the conclusion.

2. Literature Review

2.1 Block chain

The technological foundation of Bitcoin, Blockchain, comprises a sequence
of linked data blocks forming a decentralized ledger, which is collectively

maintained and shared by every node within the system. In this blockchain



ecosystem, nodes, referred to as miners, establish connections and engage
in peer-to-peer communication networks incentivized by mechanisms
driving their participation.

Auto computing power can be provided for verification and packaging
spread. during a certain period of time. At the same time, miners compete
for settlement privileges based on a consensus mechanism in which the
winner connects its assigned block to the main chain and receives a
corresponding reward, which is subsequently updated by other nodes.

The term “smart contract” was initially introduced in 1994 by computer
scientist and cryptographer (Matt et al., 2015)). Szabo (2019) defined it as
“a collection of digitally encoded commitments, accompanied by protocols
that govern the fulfil ment of those commitments”, incorporating
regulations and conditional responses. These contracts have the capability
to encompass, authenticate, and carry out intricate transactions among
distributed nodes, facilitating the exchange of information, value, and
management of assets. As transactional protocols executed by computers
capable of autonomously validating and enforcing terms and conditions
sans intermediaries, intelligent digital contracts possess the ability to merge
with diverse assets, transactions, and data, functioning as reliable agents to
execute contracts securely and efficiently. This capability paves the way for
a broad spectrum of intelligent assets and systems, establishing a distinct
category within the digital realm.

Distributed ledger technology (DLT) and smart contracts powered by
DLT share fundamental traits including trustlessness, decentralization,
autonomy, anonymity, traceability, and resistance to tampering. These
attributes offer extensive potential applications and have garnered
significant interest. Presently, they find utilization across diverse sectors

such as healthcare, finance, and the internet.
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Figure 1 The research articles published countrywise (Top 10) in the areas of
blockchain, multi-agent and distributed manufacturing systems in the last 10 years.

2.2 Distributed Manufacturing

A DM system represents a production framework that includes small
manufacturing units and is supported by advances in physics, digitalization,
and communication technologies (Jiang et al., 2016). This configuration
locates production assets and enables instant communication within the
supply chain, promoting customer-centric mass customization and system
flexibility, strengthens adaptability, agility, and flexibility. When a DM
system 1s guided by ecological requirements for redistributing
manufacturing elements, such as location, scope, standards, cost, risks, and
responsibility, it moves to redistributed manufacturing (R dM) because
RdM is currently considered a branch of DM and the proposed
collaborative model is universally applicable; therefore the difference
between these two concepts will not be emphasized below and they will be
collectively referred to as DM.

DM: By digitally integrating the entire production cycle and optimizing
logistics, products can be manufactured on demand in virtual formats
without geographical restrictions, taking advantage of local production

resources and accessible manufacturing technology. Digital design and



product sharing promotes data-driven open innovation while redistributing
stakeholder roles. Customers are elevated to the role of co-creators of value,
actively participating in the democratization of the value chain. This allows
organizations and companies to achieve sustainable development in all

economic, ecological, social and political dimensions.
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Figure 2 The number of research articles published in the areas of blockchain, multi-
agent, and distributed manufacturing systems in the last 10 years.

Given the limitations arising from current technological and resource
constraints, several obstacles remain in the practical implementation of DM
Shang et al. (2019) and Yuan and Wang (2016). This work acknowledges
common challenges and potential blockchain solutions and conducts a
comprehensive review of the existing literature. The challenges identified
are grouped into five main areas: interoperability and collaboration, security
and oversight, market integration and protocols, democratic governance
structures and global value chain management. Each of these categories is

then presented and analyzed individually.

1. Interactivity and collaboration: This presents significant challenges,
including limited access to individuals and small and medium-sized
enterprises (SMEs), complexities in interactions among multiple

agents; challenges in task planning, difficulties in scheduling resources



are involved, potentially leading to monopolistic tendencies. In
distributed production environments involving multiple agents with
different capabilities, immediate and efficient interactive networks are
critically needed to facilitate accurate communication of production
information, rational task planning and optimal resource utilization
while avoiding conflicts in social mining (SM). It underlines the
importance of interaction and collaboration among stakeholders, along
with efficient resource allocation and tracking in outsourcing and
crowdsourcing scenarios. These dynamic management processes
involve coordinating network participants, social resources, and
production services, a task that often goes beyond the capabilities of
traditional social media platforms [6]

.Security and monitoring: This presents significant challenges,
including difficulties in identity authentication, secure storage and
sharing of data, protection of intellectual property and other legal
rights, monitoring and auditing challenges. Besides being difficult and
facing threats from fake and malicious nodes, since product data
transfer replaces physical transport of product, it is important to ensure
secure storage and exchange of data containing critical information. It
1s 1mportant to create an enabling environment to engage in
construction and initiatives. In addition, the implementation of robust
certification systems can facilitate forensic analysis and monitoring of
interactions among groups with multiple attributes and interests.

. Marketing and protocols: It presents significant barriers, including
challenges in engaging individual users and production intermediaries,
difficulties in reaching tailored agreements, and complexities of risk
distribution. Valid conformity with production units relevant to

individual consumers as well in an optimal digital manufacturing



(DM) system. There should be an opportunity to enter production
agreements, allowing for greater product customization. This
highlights the need for improved engagement mechanisms for
production intermediaries, facilitating tailored agreements and efficient
contract negotiation forums. To close this gap, there is an urgent need
to digitalize production intermediaries and optimize order agreements
through more flexible, standardized, accurate, intelligent, and reliable
approaches. In the context of social mining (SM), there are challenges
to effectively match social real-time needs with production capabilities

and lack proper safety mechanisms.

3. Proposed Framework for Block chain-based Agent for
Transparent Negotiation between Various Entities in DMS
Multi-agent systems (MAS) belong to the field of distributed artificial
intelligence (DAI). They are interconnected autonomous entities that work
together in a collaborative environment to achieve specific goals Matt et al.,
2015. MAS is widely used in fields such as finance, energy, and electronic
health (eHealth) and is recognized for its adaptability, cost-effectiveness,
and efficiency Wang et al., 2019; Petrulaityte et al., 2017; Stewart and
Tooze, 2015; Srai et al., 2016) solve the expected complex problems;
however, vulnerabilities in system security, transparency, and coordination
have been identified, which threaten the integrity of the system (Rauch et
al., 2016).

4. Proposed Methodology of Blockchain

Recent studies have shown that integrating blockchain technology (BCT) is
a viable solution Economist; Chung et al., 2019; Deng and Zhang, 2019).
Although this proposition fits well with the characteristics of BCT and its
applicability in various fields, including those overlapping with MAS Burke



et al., 2017, the existing literature highlights the rigour and implementation
gap of this integration. BCT is based on distributed computing and has a
distributed accounting system that works on a peer-to-peer basis. BCT is
often associated with Bitcoin and other cryptocurrencies, but has
applications in a variety of fields. The unique hash encryption ensures high
security and the decentralized nature minimizes risks. In addition,
consensus protocols facilitate coordinated control and transparent recording
of transactions on the blockchain promotes trust by maintaining an
immutable ledger. Integrating BCT into MAS not only improves security
but also provides system-wide optimizations to improve performance.

Technically speaking, the MAS framework provides a viable structure for
integration with BCT. Among them, JADE (Java Agent Development
Framework) stands out as the most popular and widely used platform for
MAS. In contrast, the Ethereum network serves as the framework platform
for BCT.

A conceptual framework for integrating the BCT and MAS frameworks
is presented below and comes from Fornasiero and Carpanzano (2017). In
this architecture, the CA-A1 BCT represents the CA agent, which is
responsible for providing agent functionality to interact with the network.
BC-A represents a typical MAS agent, having the appropriate capabilities
and requiring certification (eCert) by a CA agent.

The architecture shown in Figure 3 operates between different agents,
such as a customer agent and a corporate agent, and facilitates coordination
between customer requests and corporate agent responses. The information
is then verified by the plant agent before being sent to the producer agent
within the DMS. The transaction or negotiation is successful if the response

from the producer agent is received and accepted. Otherwise it is unsigned.
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Figure 3 Block-chain based smart contract for mobile agent technology in DMS.

5. Results of the Proposed Proof of Concept in the Considered
DMS

In this scenario, we consider a DMS. Each manufacturing entity has the
ability to produce products according to different customer orders. In this
scenario, customer agents are initially negotiating a deal with enterprise
agents. Corporate users take responsibility for fulfilling orders requested by

various customers, acting as brokers or intermediaries in the virtual



corporate space, and maintaining the relationship between customers and
the company. Each product request must be fulfil ed by different
manufacturing services from different companies. The concept of our model
is to implement the smart contract between various peers in the DMS with
the help of Agent-based systems. Request matching process as a smart
contract and execute this contract on a distributed blockchain-enabled
platform across multiple nodes to execute the contract and store the results.
The customer initiates an order, which 1s then accepted by the business user
and passed on to the company to assess their ability to fulfil the customer
agent request.

The proposed blockchain model (BC) consists of two smart contracts.
The original agreement listed in Table 1 sets forth the agreement between
the customer representative and the company representative. This unique
smart contract simplifies the process of publishing requests, ensuring that
requests are delivered efficiently and stored securely for later processing.
Table 1 Pseudo code for the smart contract between customer

agent and enterprise agent. <!

Algorithm 1: Sharing Request between Client Agent and Enterprise Agent
for Product Request

Input: product name, product quantity, product color,

expected delivery date

7. Initialize Integer Order Sequence to 0 and a Mapping from integer to
order structure called orders.

8. O « (product name, product quantity, product color,

expected delivery date)

9. Create the order structure O and store fit.

10. Orders [Order Sequence++] «— O (storing the order)

Algorithm 2: Query Product Request Input: Order id (Integer) Output:
Order Object

1. O « orders[Order id]

2. Return O



Algorithm 3:

Define the contract &quot; Enterprise agent 1 and Manufacturing agent
Declare two public integer variables to store the engine quality and the
required quality

Function to set enterprise agent request

Function to set manufacturer agent response

Function to check the deal

function checkDeal()

If the Requested service is available the Response positive

if (Required request from agent;= available capacity)

return &quot;Deal successful&quot;

Otherwise, return &quot;Deal unsuccessful&quot;

Subsequently, the second contract shown in Table 5 governs the

interaction between the corporate agent and the producer agents. This

agreement serves as a means of matching published requests with

appropriate production agents who can provide the required services.

Furthermore, Figure 4 shows the proposed model for using smart contracts

in blockchain and describes their roles and interactions.
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A proof of concept was developed by a customer agent and an enterprise
agent and 1s shown in Figures 5 and 6 in the screenshots above. The
proposed system consists of the following elements implemented in an
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customer agent and enterprise agent. <1
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The smart contracts between the customer agent and enterprise agent
have been developed and implemented on the Ethereum platform. The
transactions and results were recorded on the public permission less
blockchain, as depicted in Figures 7 and 8.

CALL|

call]
from: 0x5B38Da6a701c568545dCfcB03FcB875f56beddC4
to: Customer agent. check Deal ()

data: 0x83b.. 20626

from 0x5B38Da6a701c568545dCfcBO3FcB875f56beddC4
Customer agent checkDeal()

to 0xd9145CCE52D386f254917e481eB44e9943F39138

execution cost 4983 gas (Cost only applies when called by a contract)

input 0x83b..2b626

decoded input {0™: “request order”}

decoded output { "0": "string: Customer agent request successful" }

logs n

Figure 7 The screenshot for the smart contract between the enterprise agent and
manufacturer agent. <J

CALIL[call]

from: 0x5B38Daba701c568545dCicBO3FB&75{56beddC4
to: Enterpriseagent].checkDeal()

data: 0x83b...2b626

from 0x5B38Da6a701c568545dCicB03FcB875f56beddC4
Enterpriseagent].checkDeall()

to Ox7EF2e0048{5b AeDe(46f6BF797943daF4EDBCB47

execution

cost 4973 gas (Cost only applies when called by a contract)

input 0xdf4f1d0515f5d237c702c1£d185e228ef2f974c2ebalff3c7e96148ee61232dd

decoded

input {“0": ask resource availability}

decoded

output 170": "Resource availability: Deal successful” }

logs 0

Figure 8 The screenshot for the smart contract between the enterprise agent and
manufacturer agent. <J



The smart contracts between the enterprise agent and manufacturing
agent have been developed and implemented on the Ethereum platform.
The transactions and results were recorded on the public permission less
blockchain, as depicted in Figure 9.

CALL[call]

from: 0x5B38Da6a701c568545dCfcBO3FcB875f56beddC4
to: Enterpriseagent].checkDeal()

data: 0x83b...2b626

from Ox7EF2e0048f5b AeDe(46f6BF797943daF4EDSCB47
Enterpriseagent].checkDeal()

to 0x5B38Da6a701c568545dCfcB03FcB875{56beddC4

execution

cost 4973 gas (Cost only applies when called by a contract)

input Oxflacbce69b91ce9a4274b8d536d4015deb73bfb52b5e85157ad1288f7ef53e02b

decoded

input {“0”: ask resource availabilir}'}

decoded

output { "0": "Resource availability: Deal Unsuccessful” }
logs 0

Figure 9 The screenshot for the smart contract between the enterprise agent and
manufacturer agent. <

6. Conclusions

In conclusion, current blockchain-based agent-based frameworks represent
significant advances in the management of distributed manufacturing
systems, and continuous efforts are underway to address scalability,
security, and environmental considerations within this framework. Research
and development is essential. Because of their relevance, future work
should focus on these aspects. The developed smart contracts where we
increase the efficiency of the proposed framework and contribute,
especially in contract negotiations between customers, enterprise s, and

manufacturers in distributed manufacturing systems. In this scenario,



numerous manufacturing enterprises scattered across diverse locations join
forces to establish a Distributed Manufacturing System (DMS), with the
goal of attaining competitive edges. One major obstacle encountered within
the DMS 1is the requirement for manufacturing entities to depend
unquestioningly on each other for conducting their activities. Such
dependency limitations impede further exploration of the DMS within the
fiercely competitive, consumer-oriented market. Consequently, businesses
are in pursuit of advanced technological remedies to mitigate this trust
issue. In this context, Agent-Driven Blockchain Technology offers several
benefits, such as enhanced security and transparency, facilitating DMS
entities to exchange resource information without relying blindly on one
another. Prior studies have put forth various frameworks for Blockchain-
based resource management within DMS. However, limited literature
delves into the application of intelligent contracts in supply chain

management to oversee and track products.
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7
Process Improvement in a Semi-automated
Shoe Polish Manufacturing Company: A
Simulation Study

In the manufacturing industry, process improvements are essential for
effective operations planning. In this study, we attempted to mimic a shoe
polish manufacturer’s present operational approach in order to improve
system performance by reducing bottlenecks. As a first step, the existing
industry manufacturing processes have been thoroughly investigated to
establish the techniques for future modifications. Later, with simulation
analysis the As-is model has been validated to examine and analyse the
performance measures such as makespan, throughput time, and work in
progress. Then, utilising a range of realistic scenarios, we try to improve the
system’s performance metrics. The production manager reviews the results

of the generated scenarios and approves for its future implementation.

1. Introduction
The global shoe care market was valued at § 4249.4 million in 2019, and it
is estimated to grow to $ 5224 million by 2026, with a 3.0% CAGR over
the forecast period. The global shoe shiner market is predicted to grow as
formal footwear sales rise due to strict rules requiring formal shoes.
Expanding population, shifting fashion trends, rising online sales and
disposable income, wearing different shoes for different situations and
purposes, and changing lifestyles are all projected to contribute to the
expansion of the shoe sales and shoe care market.

Every production system’s primary goal i1s to produce high-quality

products while making efficient use of available resources. Balancing these



objectives partially contradicts the goals of upcoming Industry 4.0 concepts.
Industry 4.0 aims to digitise the production process while decreasing human
participation by embracing concepts such as digital twins (Zawadzki and
Zywicki, 2016), virtual and augmented reality, and hybrid simulation. It
envisions machine tools and production techniques becoming more
compatible, flexible, and intelligent (Chen, 2019; Xu, 2017; ElMaraghy,
2021) to improve efficiency, productivity, and accessibility in traditional
production systems (Brecher et al., 2017).

Several obstacles arose while restructuring the production system and
machine tools for a sustainable and robust manufacturing setup. Modelling,
simulation, and analysis to create a model that would better design the
assembly line process of the product. To address the problem, we propose in
this study the XYZ Contract Manufacturing plant and ABC Industries, both
located in southern India and manufacturing shoe care goods, particularly
shoe shiners, in a traditional setup that is labour demanding. Work study is
important 1n labour-intensive industries such as footwear, footwear
accessory manufacturing, garment, and agriculture because it improves task
processing time, determines labour productivity, studies worker motion,
material movement, and assembly-line efficiency. The goal of the task is to
investigate existing procedures, standardise and balance the workload of all
workstations on the selected assembly lines, and improve line efficiency.
Also, offer relevant solutions to improve labour productivity through
process automation, assembly line simulation, and layout perspective using
a scientific methodology.

The remaining sections of this work are organised as follows. Section 2
provides a brief literature overview. Section 3 contains the case description.

Section 4 explains the process. Section 5 explains the step-by-step



experimenting approach. Section 6 contains the findings and conclusions, as

well as remarks and potential future research areas.

2. Literature

Manufacturing is an important sector of many countries’ GDP because it
creates high-paying jobs, promotes technological innovation, and generates
more economic activity than any other industry. Assembly takes up 40—-60%
of overall manufacturing time. To improve assembly scheduling, efforts are
undertaken to match limited assembly resources with assembly jobs within
a particular sequence and time constraints (Parente, 2020).

According to Guzman et al. (2022) and Yazdani et al. (2021), Assembly
Sequence Planning (ASP) is also integral to production scheduling. Zhang
et al. (2020) proposed an ASP technique based on an assembly precedence
graph, using a basic firework algorithm to limit the number of changes in
assembly direction and tool switching. While, Li et al. (2022) investigated
the dynamic scheduling and assignment of due dates for assembly
production where processing time is unknown and widely spread. Given the
uncertainty of processing time and random machine failure, Zheng et al.
(2022) developed a modified master-apprentice evolutionary algorithm to
enhance the scheduling system’s robustness. Liang et al. (2021) proposed a
machine failure prediction approach based on a convolutional neural
network (CNN) that triggers rescheduling when the machine fails.

Shahrabi et al. (2017) examined irregular work schedules and equipment
malfunctions while deciding on a time node for rescheduling. Dual Q-
learning, a reinforcement learning method, was used to overcome workshop
scheduling issues, such as shifting task arrival rates. Luo et al. (2021)
employed a Markov decision process to represent the dynamic flexible job

shop problem, in which the agent selects the tasks to be handled next and



the related machine, as well as learning the best scheduling rule at each
rescheduling point.

Zhang et al. (2021) investigated disruption-induced rescheduling and
developed a hybrid multi-population genetic algorithm (MPGA) and
constraint programming (CP) MPGA-CP method for maximising
makespan, maximum machine workload, and overall tardiness.
Reinforcement learning, a unique technique, has been used in dynamic task
scheduling due to its capacity to handle uncertainty in a dynamic setting,
self-learning capabilities, processing efficiency, and adaptability. Johnson et
al. (2022) created a Multi-Agent Reinforcement Learning system that
schedules dynamically arriving assembly jobs in a robot assembly cell. In
this study, we used simulation to design an assembly line for the company’s
shoe polish production process.

Simulation tools are utilised in a wide range of scientific and industrial
applications. Computer simulations investigate the movements of various
parts of human activity, such as motion study, to increase productivity and
train specialised professionals such as pilots (Saastamoinen and Maunula,
2021), the study of more complex mechanics experiments (Fan, 2020),
machine or production operators (Barosz et al., 2020), (Peruzzini, 2020),
and high-voltage engineers (Wang et al., 2023). Advanced algorithms
enable the creation of weather simulation models from data collected from
multiple weather sensors (Jandaghian, 2020).

Analytical methods based on computer simulations are gaining
popularity due to improved problem solution accuracy and considerable
technological developments in computer science. Thus, the use of
modelling and simulation in manufacturing engineering is unavoidable.
They are used in manufacturing processes to inspect the complete process

as well as to test the functionality of an object in a short period of time,



such as an operation, activity, station, warehouse status, and so on.
Modelling and simulation of manufacturing processes allows for the
validation and implementation of guidelines prior to their application in the
real model, as well as the detection of any errors that may develop during

operation.

2.1 Need for the Study
Although the company is dedicated to maintaining high standards, it feels

that a thorough analysis of plant productivity is necessary. This analysis
should cover technology, labour, process, and layout. This study presents a
simulation model for redefining assembly lines and semi-automated
manufacturing processes using heavy manual operations. Increasing
production and process efficiency is the purpose, and the goal is to develop
an efficient operational process by identifying and eliminating the bottle
necks. The model defines the assembly procedure for hybrid assembly
lines, which combine manual labourers and automated assembly machinery,
taking into account the production goals, product attributes, and assembly
responsibilities. Ultimately, the efficacy of the simulation model was

evaluated and used in an assembly process in the shoe polish sector.

3. Case Description

XYZ is a shoe polish factory located in southern India that employs 200
people with an 8-hour shift, twice a day. This labour-intensive company
operates in a typical setting and carries out a range of manual and partially
automated tasks. As seen in Figure 1, these tasks include polish filling,
impregnation, foam drilling, cutting, pasting, labelling, and packing with
conventional machines. Most of the company’s sales are generated in

Europe to the tune of about 80%, with the Asia-Pacific area accounting for



the remaining 20%. Nonetheless, the tasks alternate between manual and

automated manufacturing lines depending on demand.

Stage 1:Foam Cutting |—> | Stage 2:Foam drilling |—> | Stage3:Pasting Process

Stage5:Polish filling,

Stage4:Labelling Process |—-—> Impregnation & Packing

Figure 1 XYZ manufacturer activities. <!

The business is finding it difficult to keep up with the increasing demand
from around the globe. Examining the current setup and protocols,
comprehending the workload at each workstation for each assembly-line
activity, and 1identifying the demand fulfilment constraint by using
simulation tools to evaluate the system’s throughput, cycle time, failure
rate, and overall performance using scenario generation are all necessary to
address the 1ssue and offer solutions. In addition, it i1s imperative to suggest
suitable measures to enhance worker productivity through process

automation and assembly line simulation through a scientific methodology.

4. Methodology

The following steps were systematically used to conduct the simulation

analysis for improving the system effectiveness.

I. Evaluate existing production processes, systems, procedures, and

automation levels.



II. Conduct SOP analysis for current production processes and collaborate
with management to identify obstacles and opportunities.

III. The study collected primary information on manufacturing/testing
facilities, individual processes, automation levels, inventory (RM and
FG), and more through discussions, questionnaires, and observations.
The Plant Head coordinated and supported these discussions.

IV. Collect activity-based data from employees and supervisors in specific
roles.

V. Simulation analyses were employed to examine manufacturing and

support processes, as well as resource use.

5. Experimentation

The five processes of shoe polish manufacturing process are, beginning
with foam cutting, followed by foam drilling and pasting, labelling, polish
filling, impregnation, and packaging. The following steps are described in
detail:

Stage 1: Foam Cutting Process

The foam cutting operation begins with the collection of foam sheets
measured in length, width, and height. The foam used in the shoe shiner is
an essential component of the manufacturing process. It is delivered in lots
or bundles and then disassembled into pieces. To meet the market’s strong
demand for shoe shiners, daily average production is determined using the
capacity of the production line, the maximum feasible output per day, per
line, the number of hours per shift, and the worker’s takt time. ABC
presently has two identical production lines with semi-automated processes.
So, in the event of a high demand, both production lines are activated to

meet market demand.



ABC uses two hydraulic press machines grouped in a line to cut foam
into the necessary shape, which are operated manually by two people, one
for each machine. The foam sheets are kept near the machines so that they
may be quickly picked up and placed on the cutting board. The worker must
be skilled while positioning the die on the foam; otherwise, misplacement
or inappropriate pressure wears and shreds the foam while also wasting
foam and time. Before applying pressure to the hydraulic press machines,
workers ensure that the die is properly positioned on the foam. One foam

cutting takes 8 seconds.

1. Proper die placement on foam

i1. Applying appropriate pressure.

111. Demolding: One person collects pressed foam sheets and meticulously
removes each piece from the cut sheet.

iv. Determine the average time required for demoulding and quality
control checks per sheet.

v. To address absenteeism, five more workers were educated to do
quality control checks for air holes during demoulding, as this is a

skilled task that is often done manually.

Stage 2: Foam Drilling

The foam from the previous station acts as an input for this station. Two
professional workers are hired to manually put the foam pieces on the drill
bit configuration in the automated drilling system. The foam drilling
method produces fumes and heat; thus operators must wear hand gloves and
respiratory masks. To drill the soft foam, hot wire coils (pugs) are used as
drill bits. Operators press and hold the click switch simultaneously. During
this procedure, the pug rotates up to one and a half times to drill the foam

before the click switches are released. The drilled foam pieces are removed



and placed in a separate tray. When the foams are removed, the drill bench
is cleaned to eliminate waste from drilling. Brush cleaning is performed
after 8 to 9 drilling operation cycles to remove foam particles. Each hour,

the drill bits are removed from the drilling machine.

Stage 3. Pasting Process

The pasting apparatus consists of two hoopers set side by side, each
carrying hot melt glue controlled by a single operator. One operator
assembles the protection, while the other applies the foam to each hot melt
glue gun. When the desired temperature is obtained, the operator applies hot
glue to the sponge plate (average time: 3 to 5 seconds per plate). Within
seconds after applying the glue, the foam pasting operator picks up the
sponge plate, affixes a drilled foam to it, presses it evenly, and stacks it in a
container. On an average, 16 pieces are pasted per nozzle every minute,

while 64 pieces are pasted per minute with four nozzles.

Stage 4. Labelling Process

In the labelling unit, two automated machines work together with manual
intervention to label the front and back. The required label, either front or
back, is appropriately fed into the labelling machine. The sensor is inserted
in position 1 or 2, depending on the material needed, cap or grip. An
operator attaches the cap/grip on the pugs on the moving conveyor. The
conveyor belt speed is programmed to circle at a specific rate per minute.
The printing of batch codes (labels) depends on whether the product is
being sent domestically or overseas. Batch coding is vertical in domestic
markets, but horizontal in export markets. When demand is great, both

labelling lines function well. Coding is done offline.

Stage 5: Polish Filling, Impregnation, and Palletization



The polish filling station is semi-automatic, requiring manual intervention
at several places along the conveyor line. The conveyor speed is selected
based on the process requirements. The polish filling operation starts with
the silicone blend being filled to a predetermined level in the hopper. The
mix level in the hopper is checked using the provided set-up and
replenished when it reaches the cut-off level. The operator manually places
the IBM container into the conveyor’s specified track. The IBM container is
sensed and filled with the correct amount of blend. The operator places the
valve housing assembly on top of the full IBM container and secures it in
position. All of the impregnation components, such as the marked cap and
grip, the filled IBM, the glued parts, and the coded duplex cartons, are
positioned near the conveyor. An operator enters a named grip onto the
conveyor’s moving pugs, followed by another operator inserting a filled
IBM into the identified grip.

The component is then impregnated with the impregnation roller on the
conveyor. The impregnation weight 1s randomly evaluated for
appropriateness. An operator then attaches a designated cap on the
impregnated component. The component is next routed via the coding
machine, where the manufacture date, batch number, and variant are
printed.

An operator picks up the coded component, inspects it for defects, and
places it in a coded duplex carton, which is subsequently delivered to the
sealing machine. Each duplex carton should hold the necessary quantity of
shoe shiners. The L-Sleeve operator fits the duplex carton into the shrink
sleeve and sleeves it. The sleeved duplex carton is then moved to the
conveyor in the sleeve tunnel. At the opposite end of the shrink tunnel
conveyor, an operator receives the sleeved duplex carton, inspects it for

faults, and places it inside the carton.



6. Results and Discussion

Simulation analysis can foresee the unexpected impacts of changes to the
work environment and allow for experimenting with alternative scenarios to
maximise the organisation’s outcomes. In this study, we used discrete event
simulation analysis to test several situations. However, in order to grasp the
overall process of the current environment, the production manager must
first understand the As-is scenario. As a result, we run simulations for the
As-is scenario with day one and 8 hours per shift, taking into account
performance parameters such as makespan, throughput time, and work in
progress. Figure 1 illustrates the makespan data for the entire process on
day 1, whereas Figures 2, 3, and 4 depict bar graphs of throughput, work in

progress, and throughput, respectively.

State Gantt
Bidle  setup Wprocessing  blosed | empty [ relessing

foam outting 1
foam cutting 2

ac
feam drilling
foam drilling 2

foam pasting!

fosm pasting 2

foam pasting 3

foam pasting 4

front labeling

oaok labeling

coding

Filling station_ Froduct !

8:00 AM 2:00 AM 10:00 AM 11:00 AM 12:00 PM 1:00 PM 2:00 PM 2:00 Ful 4:00 PM £:00 Ful €:00

Figure 2 Gantt Chart for Makespan of 1 day simulation of As-is model. <J



Throughput of each Machine
H Throughput

foam cutting 1 5496.00
foam cutting 2 5496.00
Qc 12992.00
foam drilling 1 5429 00
foam drilling 2 5544 00
foam pasting 29732.00
foam pasting 2 2970.00
foam pasting 2 2972.00
foam pasting 4 3260.00
front labeling 12118.00
back labeling 12082.00
coding 12082.00

Filling station_ Product 12077.00

T T T
a 5000 10000

Figure 3 Throughput of each machine per hr of each station for 1 day simulation. <

The Gantt Chart above represents a one-day simulation of both
manufacturing lines, including foam cutting 1 and foam cutting 2, which are
operational from 8 a.m. to 11:15 a.m. to cut the foam to the necessary
dimensions shown by the blue bar. This operation leaves the production
lines idle. Between 8 and 11:15 a.m., shown in Figure 1, personnel are
constantly inspecting for air holes in each shoe shiner foam. Between 8 and
11:15 a.m., the quality inspection personnel in Figure 2 are constantly
inspecting for air holes in each shoe shiner foam, and reject the pieces if
they do not follow the standard, hence it takes a long time among all the
processes and acts as a bottle neck for subsequent processes.

In the foam drilling procedure, two professional individuals are recruited
to manually place the foam pieces on the pugs of the automated drilling
equipment. Again, two machines (hot wire coils) are operated in a row, one
from 8 a.m. to 4 p.m. and the other from 8 a.m. to 4:10 p.m. Following this

task, the drilling machines are idle. The pasting technique begins shortly



after drilling. This image shows two machines, each with two nozzles. The
pasting process uses four nozzles from 8 a.m. to 6 p.m. as shown in the
yellow bar in Figure 1. Two automated machines work alongside manual
intervention to label the front and back beginning in the morning and
continuing until 6 p.m. in the evening, following which batch coding is
performed.

We looked into the assembly line manufacturing difficulty in the shoe
polish industry, where activities are semi-automatic. They struggle to meet
demand during high seasons with two cutting machines and two hoppers in
scenario 1, with a daily throughput of 12077 shown in Table 1. To locate the
bottleneck, we investigated the methods, machines, equipment, manpower,
and time involved in each process, and the complete production line was

simulated for several types of operations using Flexim simulation software.

Table 1 Results of 5 scenarios and their output. <

. Throughput

Scenario\ | Throughput | Throughput (for 26 Technology | Ec

Parameters | (per hr) (per day)

days)
: 2
Scenario 1 Semi- _
(As-is) 1207 12077 314002 automatic

Semi- | !
Scenario 2 1256 12560 326560 : :
automatic !
Semi- | *
Scenario 3 1256 12560 326560 : ;
automatic 1
Semi- | !
Scenario 4 1350 13500 351000 : ;
automatic 1




As a result, we created and constructed scenarios by modifying the number
of equipment, machines, and workers participating in each production line,
as well as making changes to station operations. Redesigning the
improvement scenarios indicates that when two cutting machines and two
hoppers are used in scenario 1, throughput per day is 12077; when one
cutting machine and two hoppers are utilised in scenario 2, throughput per
day is somewhat higher at 12560.

However, the throughput remained constant when two cutting machines
and three hoppers were used in the shoe polish production line. When one
cutting machine and three hoppers were hired, the throughput increased
significantly. The simulation program output showed a throughput of
13500. As a result, one cutting machine and three hoppers were
recommended as part of the overall system enhancement. Furthermore,
doing this will reduce and remove product bottlenecks in meeting demand

during peak seasons.

7. Conclusion

To address the restrictions of meeting worldwide demand, XYZ, a shoe
polish manufacturer operating in a semi-automated environment, intends to
increase output by enhancing current performance. However, planning for
the future is difficult without first identifying the bottlenecks in existing
processes. As a result, in this study, we thoroughly evaluated the existing
environment, developed key performance indicators based on the
production manager’s expectations, and then investigated the As-is model
using a simulation study. According to the findings, the quality check takes
a lengthy time, which causes subsequent processes to be delayed. Other
observations include the requirement for two cutting machines rather than
one, as well as the maximum amount of idle time. Higher improvements are

possible with semi-automated systems, where extra hoopers can help to



speed up the operation, hence enhancing system performance. We measured
system performance using makepan, cycle time, throughput time, and work
in progress. The most promising scenarios were selected based on the
production manager’s needs for future use. This study aids the industry by
identifying bottlenecks, enhancing current processes, and advising the

production manager on future setup.
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8
Optimising Box Manufacturing Operations 1n
the Textile Industry: A Simulation-Based
Approach for Process Improvement

Box plants play a pivotal role in industries ranging from consumer goods to
manufacturing, where efficient packaging is critical to meeting global
shipping standards and customer demands. As regulations emphasis e the
use of lightweight, durable, and recyclable corrugated boxes for
transporting both perishable and non-perishable goods, manufacturers must
enhance operational efficiency to remain competitive. This chapter focuses
on optimising resource utilisation and identifying bottlenecks in the
manufacturing process of a box plant that produces packaging for drawn
textured yarn (DTY). Using FlexSim simulation software, we developed a
process improvement framework that analyses production throughput, cycle
times, machine utilisation, and labour interaction with critical machinery.
Key bottlenecks were identified in stages, such as the operation of the
Rotary Plate Cutting Machine and Kraft Waste Shredder, where excessive
idle times and material handling delays were observed. Automation was
introduced in critical production stages, including folding, bonding, and
material transport, to improve machine efficiency and reduce work-in-
progress (WIP) accumulation. Our analysis demonstrated a reduction in
throughput loss, increased system output, and minimised machine

downtime, leading to a 26% improvement in overall production efficiency.

1 Introduction

The packaging industry has experienced rapid growth in recent years,

driven by several factors including increased e-commerce activity,



urbanisation, sustainability initiatives, government policies, and
technological advancements (Shi et al., 2024). The global shift towards
more environmentally friendly packaging solutions has also fuelled this
expansion, as businesses seek recyclable and sustainable materials to align
with environmental regulations and consumer preferences. This surge has
led to a significant rise in the establishment of box manufacturing facilities,
which are critical to various industries, especially those engaged in large-
scale production and distribution (Transchel et al., 2024).

A box manufacturing facility, often referred to as a corrugated box
manufacturing plant, produces boxes from paper and pulp for packaging,
transporting, and handling raw materials or finished products. The demand
for such packaging solutions 1s growing as companies increasingly
prioritise secure, lightweight, and cost-efficient ways to transport goods,
particularly in the e-commerce and textile sector, which has seen
exponential growth post-pandemic.

The manufacturing process begins with the transport of raw materials to
the pulp manufacturing facility. Here, pulp made from softwood, hardwood,
and recycled fibre s is used to produce paper. The integration of recycled
materials in the production process not only helps in reducing costs but also
contributes to sustainable production practices. Once the paper is produced,
it is transferred to a converting facility where corrugated boxes are made
using two types of paper—Iliner and medium—combined into three layers
of corrugated sheets. Corrugated board is shaped into the desired
dimensions and configurations. Corrugated cardboard, first used for
packaging in 1897 (Talib et al., 2009), remains widely utilised today (Van
Hung et al.,, 2010) due to its lightweight, low-cost, and recyclable
properties, making it a staple in the global packaging industry.



Box production involves several technical processes, including
unloading, board production, printing, slotting, stitching, loading, and waste
material handling. Each stage requires specialised equipment (Freddi and
Salmon, 2019). Achieving full automation of the cardboard box production
process necessitates mechanisation of a broad range of technological steps.
In recent years, advancements in automation have significantly improved
production line efficiency, reducing labour costs and error rates. The most
challenging stage is folding and bonding, as boxes vary in size and shape
(Zhang, 2022). Depending on the design, boxes can be assembled using
staples, glue, or without additional fastening materials. Some are built
directly from a flat pattern, while others require glueing only one seam to
form a closed shape. These flat-packed boxes are easy to store and
transport, saving space in storage and shipping, which is an increasingly
important factor as warehousing and shipping costs rise.

Various designs and shapes of boxes require specialised equipment such
as folding and glueing units. These units are designed to automate the
glueing process for cardboard and corrugated boxes, optimising efficiency
and ensuring quality (Twede et al., 2014). Properly designing these
processes is crucial for maximising operational benefits. As production
demands increase, companies must also adhere to stringent quality
standards, as deviations in box dimensions or structural integrity can lead to
increased wastage and operational inefficiencies. Therefore, the
identification of bottlenecks and optimization of the production process are
critical for maintaining a competitive edge and ensuring the smooth flow of
operations.

In this chapter, we examine the box manufacturing operations of a textile
industry during its peak season, when demand for DTY surges. The

increased yarn production during this period drives the need for more



packaging boxes, leading to heightened demand in the box manufacturing
process. Maintaining quality standards while meeting this increased demand
1s essential to prevent variations, imperfections, wastage, and disruptions in
the process flow.

To address these challenges, it is necessary to adopt advanced process
optimization techniques. Simulation-based approaches have become
increasingly popular for optimising complex manufacturing systems. In
particular, Flexim simulation software allows for the development of
various production scenarios, helping to identify bottlenecks at each stage
of production (Lewicki et al., 2024). By simulating different scenarios, it
becomes easier to test process improvements without disrupting actual
operations. This enables manufacturers to achieve optimal machine and
process efficiency while minimising throughput time and production costs.
The objective of our study is to optimise the box production process and
reduce throughput time. A simulation environment has been created of the
DTY—-Box plant and through several scenario based analysis bottleneck
stations are identified at each stage of production, thus improving machine
and process efficiency.

The rest of the chapter is structured as follows: Section 2 presents the
literature review, Section 3 outlines the case study, Section 4 discusses the
methodology and detailed process analysis, and Section 5 provides the

results and discussion.

2 Literature Review

Optimisation in box plant operations has been the focus of numerous
studies, with an emphasis on improving efficiency, reducing waste, and
balancing production lines. Various methodologies, from simulation to
advanced optimisation techniques, have been applied to achieve these goals.

Nouria et al. (2015) designed a monitoring system using structural analysis



and bond graph models to enhance fault detection and localizability in a
corrugated board factory. Similarly, Wu et al. (2018) employed Flexsim
simulation software to optimise production lines and improve machine
efficiency, offering practical solutions for balancing processes in box plants.
Yang and Liu (2022) further demonstrated the power of Flexsim and the
ECRS rule (Eliminate, Combine, Rearrange, Simplify) in identifying
bottlenecks and significantly improving production line balance.

In terms of environmental impact, Mourad et al. (2014) used life cycle
assessment to assess plant modernisation, revealing notable reductions in
global warming potential for cardboard and paper production. This
highlights the dual benefits of operational efficiency and sustainability for
box plant modernisation efforts. Advanced optimisation techniques have
also been explored. Baykasoglu et al. (2024) proposed a matheuristic
approach that integrates mixed-integer linear programming (MILP) with
Simulated Annealing to determine optimal dimensions, production
requirements, and purchasing amounts for corrugated boards. Their method
minimis ed waste costs and stock diversity, key considerations for efficient
box plant management. Lidberg et al. (2020) combined discrete event
simulation with multi-objective optimisation to reduce lead times and
inventory levels while maintaining high delivery precision, which is critical
for managing demand fluctuations in box plants.

Process improvement strategies have also been explored. Keyser et al.
(2022) reduced setup times on rotary die-cutters by 42% using the Single-
Minute Exchange of Dies (SMED) methodology, combined with control
charts and the Five Whys technique, significantly improving throughput in
box production. Automation in packaging processes, explored by Zhai et al.
(2011), showcased the potential of fully automated systems to improve

production efficiency and reduce labour intensity, a system adaptable to box



plant operations. Kliment et al. (2022) demonstrated the utility of digital
modelling using FlexSim software, allowing companies to simulate and
optimise production processes virtually before implementing changes in
real life. This approach reduces trial-and-error and helps improve overall
process efficiency. To provide a clearer overview, a summary of key studies
in this field is presented in Table 1. These studies collectively highlight the
importance of integrating advanced optimisation, simulation tools, and
automation systems to enhance efficiency, reduce waste, and improve

operational sustainability in box plant operations.
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3 Case Study

XYZ Company, established in 1989, located in western India, has grown to
become a leading player in the global packaging industry and operates a
carton box manufacturing plant that is crucial to its supply chain network.
With over three decades of expertise, the company boasts a robust turnover
of INR 500 crore, reflecting its strong market presence and financial
stability. Employing a workforce of 2,443 skilled professionals, XYZ
Company prides itself on delivering high-quality, innovative packaging
solutions to a diverse client base. Its state-of-the-art carton box
manufacturing plant is a testament to its commitment to cutting-edge
technology and operational excellence, positioning it as a trusted partner in
the packaging sector. The box plant serves as a dedicated facility for
supplying boxes to package finished goods for various other plants within
the XYZ company. The entire box plant production process has been
divided into six stages for detailed analysis. These stages include the
Unloading Process, Board Production Process, Printing and Slotting
Process, Stitching Process, Loading Process, and Waste Material Handling

Process. Each process stage plays a vital role in ensuring the production of



high-quality boxes that meet the dimensional and structural standards. The
quality is highly valued since it is used to pack the final products of the
downstream plants within. As a result, there is a direct relationship between
box quality issues and subsequent operations, specifically the dimensions,
structural integrity, or alignment. Failure to meet the required quality can
also affect the production process flow and lead to inefficiencies. The boxes
are required to be close to perfect with strict quality controls, including
specific dimensions of width, height, thickness, strength, and the ability to
adhesion between them when folding them. Moreover, print quality and
stitching uniformity are significant in the production process because these
qualities affect the way the boxes are handled and packed with the finished
products.

This case study focuses on the application of FlexSim simulation to
optimise operations at a box manufacturing plant that produces carton
boxes. The plant layout comprises key machines such as Single Facer,
Double Facer, Numerical Control Cutter, Stacker Unit, Printing Machines,
Auto-Stitching Machines, and Bailing Machines, all working sequentially
to produce finished boxes. An in-depth analysis was conducted on the
plant’s throughput, cycle time, machine utilisation, and layout efficiency.
The Gantt chart analysis provides a comprehensive visualisation of machine
states, highlighting periods of idleness and blockage. The simulation proved
to be a valuable tool for identifying bottlenecks and optimising production
flow, enabling data-driven decisions for future capacity planning and
process improvement. This project demonstrates the importance of real-
time simulation in manufacturing, particularly in identifying inefficiencies
and implementing strategic solutions to improve productivity and

operational efficiency. This case study highlights the importance of using



advanced simulation techniques to drive continuous improvement and
achieve long-term operational success.

It is observed that box consumption is required in four major units, as
shown in Figure 1. The DTY unit at Naroli has the highest consumption of
46% of the total boxes. After this, in the Naroli plant, the FDY (Fully
Drawn Yarn) unit required 27%, and the DTY unit in Rakholi desired 25%
of the total boxes. The FDY unit of Rakholi has shown that it needs only
2% of boxes. According to the shared data, the daily average production in
the day shift (12 hr) is around 70000 boxes and in the Night shift, 40000
boxes, whereas the required number is around 96,000. Typically, the plant
operates 12-hour shifts daily, six days a week, from Monday to Saturday.
Sundays are generally reserved for maintenance activities. However, in
exceptional cases, production may extend to night shifts and Sundays to
accommodate increased demand or specific production requirements. Based
on the observation, we considered the yield rate of 94-95% for the purpose
of this analysis. Also, this value will slightly change with respect to the

three- and five-layer boards and the box slotting requirements.

27% 25 %
DTY-Rakholi
- » DTY-Naroli
FDY-Rakholi
FDY-Naroh
46%

Figure 1 Plant-wise box consumption. <!

Data



The primary raw materials required in the box plant include Kraft paper,
Ink, Corrugation Powder, Stitching Wire, and Modified starch (gum
powder). These are basic inputs to the manufacturing process, where kraft
paper is used as the primary material for the production of the box, ink for
printing, corrugation powder for strength to the board, stitching wire to
assemble the box, and gum powder for adhesive.

In addition, the box plant needs other materials to process the production
support. The caustic soda is used in cleaning and maintenance, strapping
patti and high-temperature tissue tape required in packaging finished boxes
and wire used to handle the waste ba ling machines. All these raw materials
help to facilitate the production of the boxes while meeting the required

quality standards.
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Figure 2 Monthly consumption of top 10 Kraft paper.
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Figure 4 Monthly Consumption of Corrugation Powder.
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4 Methodology

The process flow diagram of a box plant consists of six stages, from raw
material handling to final product dispatch. The process begins with the
unloading of raw materials using forklifts, followed by the storage of these
materials in godowns. The board production processes the materials
through Single Facers and feeds them into a Double Facer Unit. Adhesives
are prepared in the Glue Kitchen and integrated into the board production
line. The formed boards are then cut using a Numerical Control Cutter and
organised via a Stacker Unit.

The production flow continues into the Printing Process, where a
conveyor transports the boards to Printing Machines. Following printing,
the boards move into the stitching process, which auto-stitching machines

handle. The Waste Material Handling Process 1is depicted parallelly,



showing the shredding of kraft waste, baling, and involvement of a Rotary
Plate Cutting Machine.

Finally, the finished goods are transferred using a Hydraulic Hand Pallet
Truck to godowns, preparing for loading and dispatch. Figure 6 illustrates
the box plant process flow diagram, detailing each stage from raw material

handling to final dispatch.
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Figure 6 The Box Plant Process Flow. I

Process Analysis

This section presents a detailed analysis of the box plant process, focusing
on the performed activity and interaction between the worker (Operator and
Helper) and the Machine. This analysis was conducted using shared data
and based on observations during the plant visit. The analysis aims to
identify potential bottlenecks and areas for process improvement to enhance
overall productivity and the possible scope of automation in the box
manufacturing process. All six stages of the box production process are
shown in Figure 7, and the detailed analysis of each activity and current

manpower involved in the process are explained in the subsequent section.
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Figure 7 Box Plant Process. <

Production Output
As per the shared data from August 2023 to July 2024, we analysed the

production volumes of various boxes as finished products. These finished
products are categorised by Ply (3-Ply or 5-Ply) and box dimensions in
millimetrrs (length x width x height). There are 26 kinds of boxes, whereas

only 10 types of boxes (as shown in Figure §) have more than 20,000 units

of average monthly production.
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Figure 8 Monthly Production of the Top 15 Finished Products. <J

Box type “3 PLY 660 X 440 X 283 MM” is one of the items produced
the most, with an average of 5,13,603 units of monthly production.
Followed by the “5 PLY 666 X 444 X 280 MM” with 4,98,703 units, “5
PLY 666 X 444 X 283 MM” with 2,44,181 units and “5 PLY 666 X 444 X
244 MM” with 1,86,435 units of monthly average production. The analysis
further reveals that the box type “5 PLY 777 X 383 X 244 MM (Expo)”
requirement is consistent throughout the year, with a monthly average of
93,195 units. The total yearly production of these boxes is 2,24,25,790
units, whereas the average daily production is 71,878 units, considering 26

working days in months.

Flexsim Demo



FlexSim is an advanced 3D simulation software used for modelling,
analysing, visualising, and optimising processes in various industries,
including manufacturing, logistics, and healthcare. Its intuitive, drag-and-
drop interface allows users to create detailed simulations without extensive
coding knowledge. In the live project at XYZ Company, FlexSim was
employed to simulate the plant’s layout, including key machinery like the
Single Facer, Auto-Stitching Machines, and Numerical Control Cutter. By
analysing machine throughput, cycle time, and idle states.

The layout of a Box plant features various labelled machines such as
“Single Facer”, “Double Facer”, “Numerical Control Cutter”, “Stacker
Unit”, “Printing machines”, “Ba ling machine”, and “Auto stitching
machine” along with associated queues and trolleys. The layout represents

the workflow within the Box manufacturing process.

Figure 9 The Box Plant Model.

5 Results and Discussion

This section presents the results of the production system simulation,

focusing on key performance indicators to identify bottlenecks and areas for



improvement. Analysis includes throughput at both the machine and system
levels, a state Gantt chart visualising machine utilisation, and average stay
times for each process step. These results aim to provide insights into
system efficiency and inform strategies for optimization.

Table 2 reveals a key insight into the Box plant’s production dynamics
over a 1-day period. The analysed scenario maintains an identical machine
output of 90812 boxes, highlighting consistent production capacity, with a
system output of 67405 boxes.

Table 2 Throughput Analysis of the box plant. <

S . Overall Machine Output (1 Overall System Output (1
cenarios
day) day)
1 90812 Boxes 67405 Boxes

Figure 10 compares throughput at two different levels: machine output
and system output. The total throughput of all machines combined is 90812
units, while the final system output is 67405 units. This difference indicates
a significant loss of throughput somewhere in the production process
between the machines completing their tasks and the final output leaving
the shopfloor. This loss could be attributed to several factors, including:
work-in-progress (WIP) accumulating between stages, quality control
rejections, product rework, inefficient material handling or routing
processes, machine downtime for changeovers or maintenance, or even data
recording discrepancies. Further analysis is necessary to pinpoint the
specific causes of this throughput loss and implement improvements to
optimise the shopfloor’s overall efficiency and bring its output closer to the

total machine processing capacity.
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State Gantt chart presented in Figure 11 for a Box Plant, illustrating the
operational status of various machines over time. The chart tracks the states
of “Single Facer-1&2”, “Double Facer”, “Numerical Control Cutter”,
“Printing Machine-1&2”, “Auto Stit ching Machine-1,2&3”, “Ba ling
Machine”, and “Rottary Plate Cutting Machine”, with colour codes
indicating processing, setup, idle, and blocked states. It provides a visual
overview of machine utilis ation and potential daily bottlenecks. The Gantt
chart reveals significant inefficiencies in the production system, primarily
characterised by substantial idle time across machines. While the conveyors
and Kraft Waste Shredder operate at near full capacity, their constant

activity may mask upstream bottlenecks.
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Figure 11 Gantt Chart for Box Plant. <!

The Cycle time for each box to produce will be 1.66 + 1.66 + 0.71 + 0.5
+ 0.54 + 1.01 + 1.11 + 1.15 + 11.80 + 12.44 = 32.58 Seconds/Box. Bar
chart illustrated in Figure 12 shows the average stay time of various
machines and components in a Box plant. This data provides insights into
the time each machine holds the material during processing. The figure
suggests that the Kraft Waste Shredded and Rotary Plate Cutting Machine

stages are potential bottlenecks in the overall process.

Staytime 1
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Figure 12 Staytime of the Processors, Transporters & Queues. <J

6 Conclusion

To meet the growing demand for corrugated boxes in the DTY and FDY
packaging units, the semi-automated box production facility aims to
enhance its output by improving current performance. However, preparing

for future demands requires identifying existing bottlenecks. This study



thoroughly analysed the current production environment, defined key
performance indicators in collaboration with the production manager, and
investigated the As-is model using simulation. The analysis revealed a
significant gap between machine capacity and final system output—90812
units produced versus 67405 units delivered—indicating considerable
throughput loss. This discrepancy highlights inefficiencies in production,
material handling, or final output stages.

Further analysis using Gantt charts pinpointed bottlenecks caused by idle
time across various machines. Recommendations were made to improve
coordination between production stages and close the gap between machine
capacity and system output. Additionally, attention is needed to enhance
upstream production by optimising conveyor and waste shredder usage,
synchronising material flow, improving routing, and maximising the
utilisation of the Rotary Plate Cutting machine. Automation was suggested
for certain processes, especially folding and bonding, where variations in
size and shape pose challenges. Further improvements were recommended
for the quality control and material handling departments, where
inefficiencies were observed. Using FlexSim simulation software, various
scenarios were modelled to provide insights into process optimization. This
helped reduce cycle times, optimise bottleneck machines, minimis ¢ WIP
accumulation, and enhance material flow. Preventive maintenance
schedules were also advised to reduce machine downtime. Future work may
include sensitivity analysis of machine parameters, the introduction of
advanced production techniques, and testing of further automation scenarios

to achieve higher system efficiency and maximise output.
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9
Enhancing Paper Tube Production in the
Textile Industry: A Simulation-Driven
Strategy for Process Improvement

This chapter investigates the operational efficiency of a paper tube
manufacturing plant that supports the textile industry, focusing on
challenges encountered during peak production periods. As global demand
for sustainable packaging materials rises, particularly in sectors like textiles,
paper tube manufacturers must meet increased orders without sacrificing
product quality. The chapter examines the key operational bottlenecks in the
manufacturing process and explores strategies to mitigate these issues,
ensuring smooth downstream operations and minimising wastage. A
significant part of the analysis includes using simulation tools like FlexSim
to model production scenarios, identify inefficiencies, and optimise
machine utilisation. Through process optimization, the plant achieves its
production targets while adhering to stringent quality standards required by
the textile industry. The insights provided in this chapter demonstrate how
leveraging simulation-based tools and continuous process improvements
can significantly impact the efficiency and sustainability of paper tube

manufacturing in today’s competitive market.

1 Introduction

The global paper industry, a cornerstone of modern commerce and
communication, has experienced remarkable growth in recent decades,
fueled by the burgeoning demand for packaging, hygiene products, and
sustainable alternatives to plastic (Dai et al., 2024). This surge, evidenced
by the Food and Agriculture Organization of the United Nations (FAO)



reporting nearly 400 million metric tons of paper and paperboard produced
in 2022, highlights the industry’s pivotal role in a rapidly evolving global
landscape (FAOUA, 2022). While the rise of e-commerce and digital media
has undeniably impacted certain paper markets, it has simultaneously
driven an increased need for paper-based packaging materials, particularly
within the rapidly expanding e-commerce sector. This dynamic interplay of
evolving consumer behaviour and technological advancement underscores
the complex nature of the paper industry’s trajectory. Currently valued at
approximately USD 362 billion (2023), the global pulp and paper market is
projected to reach USD 482 billion by 2032, exhibiting a compound annual
growth rate (CAGR) of 3.2% (Statista, 2024). This projected growth is
largely attributed to the increasing adoption of recycled paper products and
the escalating demand for sustainable packaging solutions, especially within
the food packaging and e-commerce industries.

The paper industry is divided into several segments, including packaging,
printing and writing papers, tissue products, and specialty papers (Crini et
al., 2020). Among these, packaging papers and board, including corrugated
boxes and paper bags, represent the largest and fastest-growing segment
(Reichert et al., 2020). The increasing shift towards sustainable packaging
solutions, largely due to consumer awareness of environmental concerns,
has led to greater demand for paper-based packaging alternatives (Tawfik et
al., 2022). Furthermore, regulatory actions such as plastic bans in several
countries have further boosted the industry. For example, Asia-Pacific
dominates the global market, with China being the leading producer and
consumer of paper products, followed by North America and Europe.

A crucial segment within the paper industry is the paper tube
manufacturing sector. These cylindrical containers, also known as paper

cores or cardboard tubes, are crafted from recycled paperboard and find



diverse applications across various industries, including packaging, textiles,
construction, industrial uses, and consumer goods. Paper tubes are formed
by winding layers of paper or cardboard around a mandrel, resulting in a
versatile, durable, and recyclable product. Their significance lies in their
increasing role as a replacement for plastic and metalbased packaging
solutions, offering a biodegradable, cost-effective, and environmentally
friendly alternative. This sector is vital to the broader paper industry. It
supplies essential components for winding materials like yarn, films, fabric,
and paper, demonstrating their utility and contribution to sustainable
practices.

The demand for paper tubes is experiencing a surge, mirroring the global
growth of the packaging and textile industries. Packaging companies, in
particular, rely heavily on these tubes to create robust yet lightweight cores
for various products. Moreover, the intensifying focus on reducing plastic
waste has propelled the adoption of eco-friendly alternatives like paper
tubes, further accelerating market growth. Recent market studies project
significant expansion for the global paper tube industry in the coming years,
driven by its alignment with prevailing sustainability trends. However, this
anticipated growth is accompanied by increasing pressure on manufacturers
to optimise production processes, striving to meet burgeoning demand
while simultaneously controlling costs and minimising waste.

Paper tube manufacturing is a multi-stage process beginning with
carefully selecting paperboard, typically sourced from recycled or virgin
fibres. This choice impacts the final tube’s strength, cost, and environmental
footprint. The selected paperboard is then fed into specialised winding
machines. These machines precisely wind the paperboard around a mandrel,
a cylindrical core, in multiple layers. The number of layers determines the

tube’s wall thickness, strength, and crush resistance. During the winding



process, adhesives are applied to bind the layers together securely, ensuring
the structural integrity of the finished tube. The type of adhesive used is
carefully chosen based on the intended application of the tube, considering
factors like humidity resistance and food safety requirements (Gadhave and
Gadhave, 2022). Once the tube is formed on the mandrel, it is cut to the
specified length using precision cutting tools. Further processing steps can
include adding features like end caps, inner liners, or external coatings to
enhance functionality and protect the contents. Printing, often directly onto
the tube’s surface, can incorporate branding, product information, or
decorative elements.

This flexible production process allows manufacturers to tailor paper
tubes to a wide range of specifications, making them suitable for diverse
industries, including construction (forming concrete pillars), textiles
(winding yarn or fabric), and food packaging (holding snacks or powdered
products). Leading companies like DS Smith and International Paper
continuously innovate within this sector, developing new materials,
processes, and applications to meet evolving market demands and address
global sustainability challenges. Despite the inherent adaptability of the
process, manufacturers still face ongoing challenges. These include
optimising production flow to eliminate bottlenecks, minimising material
waste and scrap generated during the cutting and forming processes, and
managing adhesive usage effectively to balance performance with
environmental impact. These challenges highlight the need for continued
research and development in paper tube manufacturing to enhance
efficiency, sustainability, and cost-effectiveness.

One of the key challenges in the paper tube manufacturing industry is
bottlenecks, which occur when specific steps in the production process slow

down the overall workflow. For instance, machines that are responsible for



cutting or winding may cause delays if their capacities do not match the
upstream processes. These bottlenecks can result in longer production
times, higher operational costs, and reduced efficiency. Process
improvements, such as better machine synchronisation and automation, can
significantly reduce the impact of bottlenecks. Automation helps streamline
the production flow by ensuring consistent machine speeds and reducing
human error.

In this chapter, we examine the operational efficiency of a paper tube
manufacturing plant that supports the textile industry, particularly during
peak production periods when the demand for tubes rises sharply.
Maintaining quality while meeting increased demand 1is crucial to
minimising wastage and ensuring seamless operations in downstream
processes. To optimise the manufacturing process, simulation-based tools
like FlexSim are used to model production scenarios, identify bottlenecks,
and propose solutions for enhancing throughput and machine utilisation.
These optimizations help ensure that the plant can meet its output targets
while maintaining the stringent quality standards required by the textile
industry.

The rest of the chapter is organised as follows: Section 2 presents the
case study, Section 3 details the methodology and process analysis, and

Section 4 discusses the results and Section 5 conclusions.

2 Case Study
XYZ Company, established in 1989 and located in western India, has grown

to become a leading player in the global packaging industry, with a turnover
of INR 500 crore. Over three decades, XYZ has maintained a strong market
presence, providing high-quality, innovative packaging solutions to a
diverse client base. Employing 2,443 professionals, the company operates a

state-of-the-art paper tube manufacturing plant, which plays a critical role



in the supply chain by providing essential components to other production
units within the company. The plant runs six days a week in 12-hour shifts,
focusing on producing durable, high-precision paper tubes essential for
downstream manufacturing.

This case study focuses on the operational efficiency at the paper tube
plant, highlighting the key process stages and challenges faced in
maintaining high productivity. The paper tube manufacturing process is
divided into the following critical stages; Raw Material Unloading: Kraft
paper, adhesives, and parchment paper are manually unloaded. This labour-
intensive process requires significant time due to the size and weight of the
materials, with each Kraft paper roll weighing up to 930 kg. Slitting: Large
rolls of Kraft paper are cut into smaller widths by operators working on
slitting machines. Winding: Tubes are formed by winding multiple layers
of cut paper to achieve the required thickness. Heat Treatment: Tubes
undergo oven treatment to harden and achieve dimensional stability. Auto-
Finishing: Tubes are cut, notched, and finished to meet precise
specifications. Packaging and Dispatch: Finished products are barcoded,
packed, and dispatched for use in other production units. The operational
challenges of the plant are as discussed. Firstly, manual labour, the
unloading of raw materials is a physically demanding task, especially given
the weight of the rolls and the need for precision during transport. Secondly,
bottlenecks in slitting, slitting is a crucial stage that determines the speed of
downstream processes. Delays or errors here can lead to inefficiencies in
winding and finishing. Thirdly, quality control, dimensional precision is
critical for the tubes, as any deviation affects downstream production. The
plant faces strict quality requirements, particularly in tube dimensions and
structural integrity. Optimization can be done through simulation to address

these operational challenges, a simulation using FlexSim was applied to



optimise machine utilisation and throughput. The analysis identified
bottlenecks in the slitting and winding stages, with solutions suggested to
improve overall efficiency by balancing workforce allocation and
enhancing machine scheduling. This strategic approach enabled XYZ to
make data-driven decisions for capacity planning, ensuring continuous

improvement in the plant’s operations.

3 Methodology

The process flow diagram of a tube plant, as shown in the figure 1, consists
of several stages, from raw material handling to final product dispatch. The
process begins with the unloading of raw materials such as kraft paper and
adhesive using appropriate handling equipment. These materials are stored
in designated raw material godowns to maintain proper inventory and
workflow. Next, the materials are transferred to the plant for slitting, where
they are processed through multiple slitting machines. These machines cut
the kraft paper and other materials into required sizes. After the slitting
process, the paper is sent to winders for further processing. The winders,
typically operating in parallel, handle the coiling of the slit paper into
jumbo tubes for loading into the ovens.

The production flow continues as the jumbo tubes are heated in multiple
ovens to set the material for the next stages. Once heated, the tubes are
transferred to the auto-heading machines, which are organised into various
units. These machines automatically cap the ends of the tubes to complete
the formation process. The waste material handling process operates
concurrently, where kraft waste generated during slitting is recycled. The
waste is collected, processed, and either reused in the slitting machines or
handled through appropriate recycling and disposal mechanisms. Finally,
the finished goods, including both full-length and cut-to-size materials, are

packed into boxes. These boxes are transferred to finished goods godowns



using material handling equipment, preparing them for loading and
dispatch. This flowchart outlines the key stages, from raw material intake to
the final dispatch of products, ensuring a streamlined and efficient
production flow.

The functioning of a tube plant is understood by simulating the Tube
Plant model on FlexSim, a powerful simulation tool, to model and analys e
the production flow (Figure 2). By simulating the process flow of raw
material handling, slitting, winding, heating, and auto-heading in FlexSim,
key bottlenecks and inefficiencies in the plant were identified. The
simulation provided insights into optimal resource allocation, machine
utilization, and process timings, enabling the team to test various
production scenarios without disrupting actual operations. FlexSim’s
visualisation of the workflow helped highlight areas where process
improvements could lead to reduced downtime and increased throughput.
The insights gained from this simulation were crucial in optimising the tube
plant’s production flow, reducing waste, and enhancing overall operational

efficiency.

Figure 9.2 The Paper Tube Plant Model. <



4 Results and Discussion

This section presents the findings from the simulation and optimisation of
the paper tube manufacturing process, focusing on how operational
efficiency can be enhanced to meet the demands of the textile industry,
particularly during peak production periods. Key metrics such as
throughput, machine utilisation, and cycle time were analysed, revealing
critical bottlenecks in production and identifying areas for process
improvements. By employing simulation tools like FlexSim, we were able
to model different production scenarios and propose solutions for
improving performance across the plant. The discussion also contextualis es
these results within the broader literature on manufacturing process
optimization and highlights the implications for industrial-scale

applications, particularly in industries that face cyclical demand patterns.
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Figure 9.1 Process flowchart of tube plant.

Table 1 highlights a significant discrepancy between the potential output
of individual machines and the actual system output of paper tubes. While

the machines are capable of producing 87,663 (12 m) tubes in a day, the



system only delivers 12,087 (12 m), indicating a major bottleneck in the
production process. This suggests potential issues with machine reliability,
quality control, material waste, or production flow inefficiencies.
Addressing these underlying problems through process optimisation,
improved machine maintenance, and effective quality control measures is
crucial to increase overall efficiency and profitability for the paper tube

manufacturing operation.

Table 1 Throughput Analysis of the Tube plant. <

S . Overall Machine Qutput (1 | Overall System Qutput (1
cenarios
day) day)
1 87663 Tubes 12087 Tubes

Figure 3 reveals a significant discrepancy between the machine and
system output. The figure highlights the total machine throughput,
representing the combined output of all machines, at 87,663 units.
However, the final system output, reflecting the number of completed tubes
leaving the shop floor, is significantly lower at 12,087 units. This difference
signifies a substantial loss of throughput somewhere within the production
process. Several factors could contribute to this loss, including work-in-
progress (WIP) accumulating between stages, quality control rejections,
product rework, inefficient material handling or routing processes, machine
downtime for changeovers or maintenance, or even data recording
discrepancies. Further analysis is crucial to pinpoint the specific causes of
this throughput loss. By identifying and addressing these bottlenecks, the
shop floor’s overall efficiency can be optimised, bringing its output closer

to the total machine processing capacity.
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The State Gantt chart in Figure 4 presents an overview of the operational
states of key machines within the paper tube manufacturing process over a
single day. Machines such as slitting, winding, and barcode equipment are
monitored in terms of their active processing, setup times, idle periods, and
blockages. The results highlight significant operational inefficiencies,
particularly among the winding machines and slitting machines. For
instance, Slitting Machine 3 and Winding Machines 3, 4, and 5 experienced
prolonged periods of blockage (indicated by red), suggesting potential
bottlenecks that are disrupting the production flow. These blockages likely
result from either resource constraints or upstream delays, contributing to
downstream 1nefficiencies. In contrast, Auto Machines 7 to 10 and the
Barcode Machines exhibited high utilisation with minimal blockages,
primarily operating in idle (green) or processing (yellow) states. This
suggests that while certain parts of the production line are well-optimised,
other areas, especially the slitting and winding sections, require process
improvements to reduce downtime and increase overall throughput. These
findings are critical for identifying and addressing bottlenecks to enhance

the plant’s operational efficiency during peak demand periods.



State Gantt 1

Processing [l Setup idie | Blocked

Siitting Machine 1
Slitting Machine 2
Slitting Machine 3 —_————————— |
Winding Machine 1
Winding Machine 2

Winding Machine 3
Winding Machine 4
Winding Machine 5

QOven 1

Qven 2

Auto Machine 1
Auto Machine 2
Auto Machine 3
Auto Machine 4
Auto Machine 5
Auto Machine &
Auto Machine 7
Auta Machine 8
Auto Machine 9
Auto Machine 10
Barcode Machine 1
Barcode Machine 2
Barcode Machine 3
Barcode Machine 4
Barcode Machine &

Trolley 1

Trolley 2

9:00 AM 12:00 PM 3:00 PM 6:00 PM
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The Stay Time chart (Figure 5) presents the average time that each
machine or component in the paper tube production process holds a 12-
metre tube before it moves to the next stage. This detailed breakdown
reveals key contributors to overall cycle time and highlights areas for
potential process optimization. The total cycle time per tube is calculated as
53.8 minutes, combining the stay times across the entire production line.
From the chart, it is evident that Auto Machine 1 has the longest stay time,
holding the material for an average of 20 minutes, representing a significant
portion of the total cycle time. Other machines like the Slitting Machine 1
(6.72 minutes), Winding Machine 1 (7.13 minutes), and Barcode Machine 1
(7 minutes) also contribute notable delays. The Oven 1 also adds 4.75

minutes of processing time, reflecting the thermal processes required for



tube manufacturing. The two trolleys used for material movement
contribute around 6.9 minutes collectively, while the initial Sourcel setup
has a relatively short stay time of 1.3 minutes. These results pinpoint Auto
Machine 1 as a key area for intervention to reduce overall production time,
along with opportunities to streamline slitting, winding, and barcode
processes. By addressing these bottlenecks through techniques like machine
scheduling and process automation, the plant can significantly enhance
throughput and reduce the total cycle time, especially during peak

production periods.
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Trolley 1 3.57
Oven 1 475
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Figure 9.5 Stay time of the Processors, Trolleys, & Queues. <!

5 Conclusion

This chapter presents a comprehensive analysis of a semi-automated paper
tube manufacturing facility supporting the textile industry, focusing on
identifying and mitigating bottlenecks in the production process. The
findings revealed a significant gap between machine capacity and system
output, which led to considerable throughput loss. By utilising simulation

tools such as FlexSim, various production scenarios were modelled to



identify inefficiencies and bottlenecks that contribute to idle times and
material flow disruptions.

Key areas requiring improvement included the synchronisation between
production stages, particularly in upstream processes like slitting, winding,
and material handling, as well as the optimisation of machines like the
Rotary Plate Cutter. The results also indicated that automating processes,
such as folding and bonding, could help address the challenges posed by
variations in product size and shape. Moreover, improvements were
recommended for quality control and material handling to reduce
inefficiencies and enhance overall throughput.

The study’s recommendations for implementing preventive maintenance
schedules, automating critical processes, and synchronising material flow
offer practical strategies for increasing the plant’s productivity and closing
the gap capacity and output. Future work may explore advanced automation
techniques, further between optimization of production flows, and
sensitivity analysis of machine parameters to ensure the plant can meet
future demand efficiently and sustainably. These process improvements are
crucial for maintaining the plant’s competitive edge in an industry driven by

increasing demand and stringent quality standards.
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